How Did Life Begin?

My 3-part series of popular science articles on the history of origin of life research has been published in ORBITER magazine. Part 1 presents a “pre-history” of how the origin of life became a real scientific problem in the first place (for many centuries it actually wasn’t!). Part 2 presents a brief overview of 20th century scientific progress on origin of life research, from the idea of a primordial soup to that of an RNA world, and beyond. Finally, part 3 presents a brief history of autocatalytic sets, from Stuart Kauffman’s original idea published in 1971, to some of the most recent insights.

Beating the Avatar Blues

When the movie Avatar was released in late 2009, a strange thing happened with many people who saw it. They got depressed, even suicidal. It wasn’t because they disliked the movie, but because they liked it so much, they wanted to live in a gorgeous, almost utopian, world like Pandora, rather than on planet Earth. Pandora, the fictitious alien moon portrayed in the movie, has an amazing natural beauty, and human-like inhabitants (the Na’vi) living in peaceful harmony with it.

Read the full piece on ORBITER magazine

The Power of Snooker

A particular mathematical relationship known as a power law has been observed in many day-to-day situations, from the frequencies in which words are used in natural languages to the connectivity distribution in Facebook friendship networks. As it turns out, though, such a power law can also be found in snooker statistics. And if the amazing Ronnie O’Sullivan continues to produce centuries at the same rate, the mathematical correspondence will be even better!

Read the full story on Plus magazine

The February 2019 Supermoon

A “supermoon” happens when a full moon occurs around the same time that the moon is at its closest point to the earth (perigee) in its elliptical orbit around our planet. This means that the full moon will appear extra large and bright. In fact, it can appear up to 30% larger and brighter compared to the opposite, a “micro-moon”, when the full moon occurs around the same time that it is furthest away from the earth (apogee). Last night happened to be the brightest supermoon of 2019.

Read more

A Home for Complex Systems Science

In complex systems science, the notion of complexity is often summarized with the phrase “the whole is more than the sum of its parts“. This expression can be traced all the way back to the early Greek philosopher Aristotle (Metaphysics, Book VIII, 1045a.8-10) and mathematician Euclid (Elements, Book I, Common Notion 8). It was therefore appropriate to have a conference on complex systems in Greece. As part of a delegation from the Institute for Advanced Study of the University of Amsterdam, I attended this conference to learn more about recent advances in complex systems science, and about some ancient Greek history. Read more

Workshop Report: Developmental Biases in Evolution

“Developmental bias is a manifestation of a much more fundamental principle, and is the norm rather than the exception”, according to one scientist. “Developmental bias is a misleading term and we should get rid of it”, according to another. Both were in the same room, at the same time. So what is developmental bias, what role does it play in evolution, and why do we even care? These questions were the focus of an interesting and spirited workshop, the third in a series of EES project meetings, held recently at the Santa Fe Institute. As with the first meeting, I was able to sit in on this workshop, like a fly on the wall, and listen to the presentations, arguments, and debates. Here’s what I learned…

Read the full piece on the EES Blog

From an Ecologist’s Nightmare to a Mathematician’s Dream

“Since you are a computer scientist, I have an optimisation problem for you!”, my colleague said, half jokingly. As an ecologist, one of the things my colleague studies is invasive plant species. The question he was facing is how to reconstruct the most likely routes along which these species travel when they invade new territory, based on historical records on when and where they first appeared. As it turns out, this question is an instance of a known mathematical optimisation problem called the minimum cost arborescence problem.

Read the full story on Plus Magazine

The Evolution of Emergent Computation

Many systems in nature consist of a large number of relatively simple units that interact only locally, and without a central control, yet the system as a whole can perform sophisticated global information processing, or produce intricate globally coordinated behaviors. A well-known example of this is quorum sensing in microbial communities, where the basic units are bacteria.

Read the full story on TVOL.

Complex Experimental Autocatalytic Sets

Autocatalytic sets are self-sustaining chemical reaction networks which are believed to have played an important role in the origin of life, and to be an underlying principle of living systems in general. They have been studied in great detail both mathematically and with computer simulations, and actual experimental examples have been constructed in the lab. However, so far these experimental examples were of a limited complexity (so-called “elementary” autocatalytic sets). Recently, though, a group of researchers have constructed and studied the first experimental example of a more complex (“non-elementary”) autocatalytic set.

Read more

The Evolutionary Roots of Irrationality

Standard economic theory assumes that humans behave fully rationally and are able to objectively calculate the value (or cost) of the different choices they are presented with. In fact, we pride ourselves on our rationality. Different from the animals, we humans have the unique capacity for logical thought and rational decision making. Or do we?

Read the full piece on This View of Life

Citizen Science: Schumann Resonances

Schumann resonances (SR) are global electromagnetic resonances generated by lightning in the cavity between the Earth’s surface and the ionosphere. Their existence was predicted mathematically in 1952. However, it took another decade before they could be reliably measured and verified. Given that Schumann resonances occur in the same electromagnetic frequency spectrum as human brain waves, it has been suggested that extreme fluctuations in these resonances could affect human behavior and health.

Read the full story at Plus magazine.

Snooker Statistics Follow Precise Mathematical Laws

A particular mathematical relationship known as a power law has been observed in many day-to-day situations, from word use frequencies in natural languages to the connectivity distribution in Facebook friendship networks. As it turns out, though, such a power law can also be found in snooker statistics. And if the amazing Ronnie O’Sullivan produces yet a few more centuries, the mathematical correspondence will be even better! Read more

What’s Your Problem?

Some problems are fundamentally hard, not only for humans, but even for computers. We may know how to solve these hard problems in theory, but in practice it might take billions of years to actually do so, even for the fastest supercomputer.

Read the full story on Plus magazine…

The Origin of Life: A Selfish Act or a Cooperative Effort?

Around 1620 the Flemish chemist Jan Baptist van Helmont, often considered the father of pneumatic chemistry (the chemistry of gases), wrote the following:

“If you press a piece of underwear soiled with sweat together with some wheat in an open mouth jar, after about 21 days the odor changes and the ferment coming out of the underwear and penetrating through the husks of the wheat, changes the wheat into mice.”

This reflected the commonly held belief at that time, even among many scientists, of spontaneous generation. Life was assumed to arise spontaneously and continuously: mice from wheat, maggots from meat, frogs from mud, and so on.

Read the full story on TVOL.

An Unconventional Place for Unconventional Science

Earlier this year, the inaugural workshop of the EES Project was held at the Konrad Lorenz Institute (KLI) in Austria. The KLI is a private and independent research institute with a focus on the development and evolution of biological and cultural complexity. Housed in a beautiful baroque building in the medieval town of Klosterneuburg, it offers a place to think outside the box, escape the usual academic constraints, and work on unconventional ideas.

Read the full story on the EES blog…

Citizen Science: The Statistics of Language

Our ability to learn, use, and process language is something that sets us apart from other animals. Language is used for effective communication, but also allows us to express our creativity through literature, poetry, and song. However, our use of language follows strict mathematical principles as well. One of the best known of these is Zipf’s law.

Read the full story in Plus magazine…

Cause and Process in Evolution

“Most scientific explanations are causal. This is also the case in evolutionary biology, where the primary goals are to explain the diversity of life and the adaptive fit between organisms and their surroundings. Yet, the nature of causation in evolutionary biology is contentious.” So starts the description of a workshop on Cause and Process in Evolution, organized by Kevin Laland and Tobias Uller. It brought together an eclectic mix of evolutionary biologists, developmental biologists, and philosophers of biology, with the aim of addressing this contention. I sat in on this workshop, like a fly on the wall, in the hope of learning a bit about the latest research and debates in evolutionary biology.

Read more

Citizen Science: Facts or Fake News?

In this day and age of the internet, where anyone can post anything, it is often difficult to know what is true and what is not. One person claims one thing, while another states the exact opposite. Who to believe among all this (sometimes deliberate) confusion? The upside, also thanks to the internet, is that you don’t need to be a professional scientist to find out at least some of the truth for yourself. With the increasing availability of public online databases and easy-to-use software, “citizen science” can go a long way at countering unsubstantiated claims.

Read the full story on Plus magazine…

Can Computers Help Us Conserve Biodiversity?

We’ve heard it all too many times: animal and plant species are currently going extinct at a rate that is higher than ever before. Climate change, over-pollution, and urban and agricultural encroachment all contribute to the rapid decline of our planet’s biodiversity. So much so, that there is a real danger that even within the next few decades, several major ecosystems worldwide (such as mangrove, alpine, and polar regions) will be seriously disrupted, with major consequences for us humans as well.

Thankfully, efforts are underway to try and curb some of these negative influences. But without knowing better what exactly their consequences are, it is almost like driving in the dark without the headlights on. Is there a way to estimate more accurately what the biodiversity consequences are of, e.g., a two-degree increase in global temperature? It turns out the answer is yes (at least to some extent), thanks to mathematics and computers.

Read the full story on The Naked Scientists…

Update on Earth Activity Data

In a post just over a year ago, I presented data on earth activity (in particular earthquakes, volcanic eruptions, and tropical storms). Given all the buzz on the internet about an increased earth activity over the past several years, I was curious to see this for myself, so I downloaded and analyzed some publicly available data. Surprisingly, though, the data showed no such increase at all. In the current post, I present the updated data for up until the end of 2016, which still shows no sign of any unusual behavior. Judge the plots below for yourself…

Read more

Spontaneous Spirals

Spirals are common in nature. We’ve all admired the beautiful spirals that occur on sea shells, we can find spirals in plants, and even in the arms of galaxies or weather patterns. There are also situations in which spirals aren’t a result of slow growth, but occur spontaneously in biological or chemical systems. A famous example from chemistry is the Belousov-Zhabotinsky (BZ) reaction: when several chemicals are mixed together in a petri dish, the resulting solution forms changing spiral patterns. In biology a particular slime mould, called dictyostelium discoideum, gives rise to similar patterns. Spontaneous spiral wave formation in such systems can be reproduced and studied with simple mathematical models known as cellular automata.

Read the full story on Plus magazine