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Abstract

The correlation structure of fitness landscapes is a much used measure to characterize and classify
various types of landscapes. However, analyzing the correlation structure of fitness landscapes has so
far been restricted to static landscapes only. Here, we investigate the correlation structure of coupled,
or dynamic, fitness landscapes. Using the NKC model of coevolution, we apply a correlation analysis
on various instances of this model and present the results. One of the main goals of this paper is thus
to show that a previously introduced correlation analysis can be successfully extended to coupled
fitness landscapes. Furthermore, our analysis shows that this provides meaningful and interesting
results that can contribute to a better understanding of coevolution in general.

1 Introduction

In 1932 Sewall Wright introduced the concept of fitness landscapes into evolutionary biology [1]. In
a simplest version of this concept, one pictures a space of genotypes, with each genotype a single
mutant distance away from its neighbors (i.e., neighboring genotypes differ at only one locus). This
creates a high dimensional space of genotypes. To each point in this space a fitness value is assigned,
assuming the limiting case that a species is isogenetic, occupying a single point in the space. This
fitness value can be defined as one wishes, for example the propensity to have offspring, the ability
to solve a certain given “problem”, or any other scalar measure. If the fitness distribution over the
space of genotypes is considered, one obtains, in general, the picture of a more or less “mountainous”
fitness landscape.

In a constant environment (static landscape), a species evolving by itself under mutation, recom-
bination, and selection, explores this landscape in search of the highest peaks (or fitness values). For
appropriate low rates of mutation and recombination, the population climbs to a nearby fitness peak
and then remains trapped in the absence of outside perturbations.

One can measure a number of features of such more or less rugged landscapes, such as the number
and distribution of local peaks, the distribution of their heights, the number of local peaks that can
be accessed from a given initial condition, and other features. Important among such features is the
correlation length of the landscape. Here one takes a random walk on the landscape, noting the fitness
at each step, then computes the autocorrelation function of this series of fitness values, which gives
the (average) correlation in fitness between two points a certain number of steps t apart. In general,
smooth landscapes have long correlation lengths (there is still a significant amount of correlation
for large values of t), random landscapes have zero correlation length, and rugged landscapes have
correlation lengths that decrease as ruggedness increases. A complete correlation analysis of fitness
landscapes, based on this random walk method, is briefly reviewed in section 3.

Contrary to the above (static) case, real evolution involves interactions between different species.
Adaptive moves by members of one species deform the fitness landscape(s) of other species with which
it is coevolving. Thus, a coevolutionary system is a general dynamical system without a potential
function. The coevolutionary dynamics can exhibit the analogue of Nash equilibria where each species
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is located on a peak consistent with the peaks of other species. Or oscillations may occur, where a
move of one species causes the fitness peak of another species to move, so this second species has to
move to this new location, causing the peak of the first species to move, so now this species has to
move to this new location, causing the peak of the second species to move back to its former location,
etc. The coevolutionary system may even exhibit chaotic behavior, when all species keep coevolving
without settling down (the peaks are moving faster than the species can evolve).

So far, fitness landscapes of such coevolving systems, or coupled landscapes, have not been studied
very much or very well. The purpose of this paper is to analyze the correlation structure of tunably
rugged coupled fitness landscapes in an attempt to fill this lacune. In the next section, a general
model for generating coupled landscapes (the NKC model) is briefly reviewed first. Section 3 then
gives an short overview of a complete fitness landscape analysis that is extended and used here to
study these coupled landscapes. In section 4 the general setup and model parameters we have used are
summarized, while section 5 presents the results of our analysis. These results provide meaningful and
interesting insights, summarized in the final section, that can contribute to a better understanding
of coevolution in general.

2 Models of Fitness Landscapes

The tunably rugged landscape model we adopt is the NK model [2, 3, 4]. Here each gene in the
genotype makes an independent fitness contribution fi that depends upon the allele of that gene i
itself and on the alleles of K other genes in the genotype. There are N total genes, and for simplicity
it is assumed that the genotype is haploid and that there are only two possible alleles (0 and 1, i.e.,
the genotypes are bit strings). In the NK model, the K inputs to each gene (or epistatic interactions)
can be chosen at random, or as the K/2 nearest genes on either side of the given gene (assuming the
genotype is “circular”). This creates 2K+1 combinations of alleles for the K+1 genes that determine
each gene’s fitness contribution fi. These fitness contributions are simply assigned at random out
of some statistical distribution as follows. For each gene i, each of the 2K+1 allele combinations is
assigned a random value from the uniform distribution between 0.0 and 1.0. This creates a table of
size N × 2K+1 with i.i.d. random values, from which the fitness contribution fi of each gene can be
determined for a given genotype. The overall fitness of this genotype is then simply the average over
all fitness contributions, i.e., f = 1/N

∑N

i=1
fi. For a detailed overview of the NK model, see the

references given above.
The general properties of NK landscapes are as follows. When K=0, the landscape has a single

peak, smooth sides and a long correlation length. When K=N-1, the landscape is completely random
with nearly exponentially many peaks and zero correlation length. In between, the ruggedness of
the landscapes increases and the correlation length decreases as K increases. Thus, by changing K
(relative to N), we can tune the ruggedness of these fitness landscapes.

Coevolution among two species is now modeled by assigning to each gene in the genotype of
species 1 “external” inputs from C genes in species 2, and vica versa, in addition to the K “internal”
inputs. This raises the total number of allele combinations for each gene to 2K+C+1. Again, fitness
values are assigned to each combination at random from the uniform distribution between 0.0 and
1.0. The additional C inputs from the other species for each gene are also chosen at random. This
coevolutionary model, known as the NKC model [5, 4], gives rise to tunably rugged coupled fitness
landscapes. In general, if C>0, a move by one species on its landscape will deform the landscapes of
its coevolutionary partners.

The next section will give an overview of a method for analyzing the correlation structure of
(static) fitness landscapes, and how it can be extended to study coupled landscapes.

3 Fitness Landscape Analysis

In [6] a new statistical fitness landscape analysis method was introduced. This analysis is based
on an earlier random walk method of [7], but additionally uses a time series analysis known as the
Box-Jenkins approach [8, 9]. The advantage of this new method is that it provides a more detailed
analysis of the landscape data, resulting in a complete stochastic model that expresses the correlation
structure of the landscape, whereas previous methods generally only return one single number (being
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some sort of average correlation or correlation length; see e.g. [7, 10, 11]) that summarizes the entire
landscape structure. In [6] this landscape analysis was applied to the NK model, showing that the
results have both explanatory and predictive value. In [12] it was subsequently applied to “less well-
behaved” fitness landscapes, once more showing the usefulness and advantages of this more complete
method over simpler methods. For a detailed introduction of the analysis we refer to the original
paper. Here, we will give a brief overview of the main ingredients of the method, and describe how
it can be extended to coupled fitness landscapes.

First, the analysis starts by generating a time series ft, t = 1, . . . , T of fitness values by performing
a random walk on the fitness landscape. Starting with a random genotype, its fitness f1 is calculated
and recorded. Then a neighboring genotype in the landscape is chosen at random and its fitness f2 is
calculated and recorded, and so on up to some time step T . Note that the notion of a “neighboring
genotype” depends on the move set that is considered (e.g., some sort of mutation or crossover).
Here, we will only be concerned with point mutation (i.e., simply flipping one bit at a time).

Next, the Box-Jenkins approach [8, 9] is applied to this time series ft. Briefly, this method first
calculates the autocorrelations ri and the partial autocorrelations ai from the given time series. The
autocorrelation ri gives the (average) amount of correlation between two points in the time series that
are i steps (called time lags in the language of time series analysis) apart. A value close to 1 means a
high correlation, and a value close to 0 means hardly any correlation. The partial autocorrelation ai

can be interpreted as the average correlation between two points i time lags apart after the effect of the
intermediate points on this correlation are taken out. Once the (partial) autocorrelations have been
calculated, they are then used to identify and estimate an ARMA (autoregressive moving-average)
model that adequately represents the stochastic process that generated the original time series. An
ARMA(p,q) model is of the form

xt = α1xt−1 + . . . + αpxt−p + εt + β1εt−1 + . . . + βqεt−q,

i.e., the current value in the time series depends on a weighted sum of p previous values plus a
weighted sum of q + 1 white-noise terms. One could interpret p as the amount of “memory” that is
in the system. Again, we refer to [6] for a detailed introduction and application of the method.

The above correlation analysis for fitness landscapes can be extended to coupled landscapes with
only a slight modification. Suppose we have two coevolving species who’s landscapes are coupled.
First, a time series ft of fitness values is generated as follows. Perform a random walk on the landscape
of the first species, just as in the original analysis, and record the fitness value ft at each time step.
However, starting from a random genotype on the second landscape, move this second (or coevolving)
genotype to a neighboring one in its landscape every m steps during the random walk on the first
landscape. In other words, perform m steps of the random walk on the first landscape, recording
the fitness values, then make a random move in the second landscape, perform m steps on the first
landscape again, continuing to record the fitness values, make a random move in the second landscape
again, and so on until T steps on the first landscape have been made. Once a time series of fitness
values has been generated this way, the Box-Jenkins approach can be applied again, just as in the
original landscape analysis.

This way a correlation analysis can be performed on coupled landscapes, introducing only one
additional parameter, m, which can be interpreted as the relative rate of (co)evolution of the second
species compared to that of the first species. If m=0, the second species does not evolve at all, and the
analysis degenerates to that of a static (uncoupled) fitness landscape, which is useful for comparing
the coevolutionary case against.

4 Experimental Setup

Using the NKC model as explained in section 2, and the extended fitness landscape analysis as ex-
plained in the previous section, we performed a correlation analysis of coupled fitness landscapes for
different levels of couplings and rates of coevolution. This section provides details of the implemen-
tation and model parameters used, while the next section will present the results of the analysis.

For the implementation of the NKC model, we used a method of calculating fitness values similar
to that described in section B2.7.2.4 of [13], and based on a previous implementation of the NK model
by Terry Jones (personal communication). In this method, fitness values are not explicitly stored, but
recalculated in an efficient way each time they are needed. This method has been tested extensively
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in the previous implementation just mentioned. Furthermore, only nearest neighbor interactions are
considered for the K (internal) epistatic interactions (where the genome is considered to be circular, so
the first and last genes are each others direct neighbors). Finally, the C external epistatic interactions
are chosen at random for each gene.

The parameter values we used for the NKC landscapes are as follows: N=100, K=0,2,10,20,50,
and C=0,2,10,20,50. We did not consider values for K (or C) larger than 50, as previous results on
regular NK landscapes have already shown that in these cases the landscapes become so rugged that
there is hardly any correlation left, and they were not considered interesting for the present study.
So, all in all we considered 25 different combinations of K and C, giving rise to as many different
coupled landscapes.

For the random walks to generate time series of fitness values we used the following parameter
values: m=0,100,10,5,1 and T=100000 (=105). We included the (degenerate) case of m=0 for com-
parison (and verification) with results on regular NK landscapes. So, on each of the 25 (coupled)
landscapes we generated 5 random walks, each with a different value for the rate of coevolution m,
and each walk consisting of 105 steps.

Finally, a simple C program was written to calculate the autocorrelations and partial autocorre-
lations of the time series of fitness values.

5 Results

In this section we present the main results of the correlation analysis as applied to the NKC model.
If not explicitly mentioned, values for the model parameters as given in the previous section are
assumed.

5.1 Comparison with regular NK landscapes

To verify the results on the NKC landscapes, they are first compared to those on regular (static)
NK landscapes. Obviously, NKC landscapes with C=0 or with m=0 (regardless of the value of C)
should generate the same results as regular NK landscapes with similar values for N and K. In the
case of C=0, there is no coupling between the different species, so each species just evolves on its
own landscape as if it was a regular, static landscape. When m=0, regardless of the value of C,
there is a coupling between the different species, but the second species is not evolving (no updates
or mutations). So, even though the second species does influence the fitness of the first species, this
influence is not changing over time, and thus the landscape degenerates to a static one.

Figure 1 shows the autocorrelations ri, as calculated from the time series of fitness values generated
by the random walks, up to time lag i = 50 for regular NK landscapes for the various values of K.
Clearly, the amount and length of the correlation decreases with increasing K. These results agree
with results reported previously in [6], where it was also shown that in most cases the appropriate
model to describe the correlation structure of these landscapes is an ARMA(1,0), or simply AR(1),
model.
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Figure 1: The autocorrelations ri on regular NK landscapes for various values of K.
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For comparison, figure 2 shows the same results, but this time together with those as calculated
for the NKC landscapes for C=0 (left) and for m=0 (right). In both plots, the solid lines show
the autocorrelations for the regular NK landscapes for the various values of K. In the plot on the
left, the different dashed lines show the autocorrelations for the corresponding K values on the NKC
landscapes with C=0 and different values of m. In the plot on the right, the dashed lines show the
correlations for the corresponding K values for m=0 and different values of C. As the plots clearly
show, they all agree very well with the regular NK landscapes, indicating that these cases indeed
degenerate to a static landscape and thus form a base case for comparing coevolution with.
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Figure 2: The measured autocorrelations on NKC landscapes for C=0 and different values of m (left,
dashed lines) and for m=0 and different values of C (right, dashed lines). For comparison the correlations
on regular NK landscapes for the various values of K are shown in solid lines in both plots.

5.2 Correlation on coupled landscapes

Next, we will look at the correlation structure of coupled landscapes. The analysis is split up in
three cases: (1) a slow rate of coevolution (large values of m), (2) an intermediate rate of coevolution
(intermediate values of m), and (3) a fast rate of coevolution (small values of m). The results are
presented in the next three subsections.

5.2.1 Slow rate of coevolution

First, consider the case where the second species is evolving slowly compared to the first species, i.e.,
the value of m in our coevolution model is high. Figure 3 shows the main autocorrelation value (i.e.,
r1, or the correlation between neighboring points in the landscape) for the different combinations of
K and C in a grey-scale plot for m=100.

As the plot shows, the value of C does not have any significant influence on the first autocorrelation.
The color within one particular column (i.e., for one particular value of K) does not change for different
values of C, and the main correlation value depends only on the value of K.

To have a more detailed view, figure 4 shows the autocorrelation plots for m=100 for K=2 (left)
and K=10 (right) for the different values of C. Here, a subtle but surprising effect shows up for K=2.
All the dashed lines (i.e., autocorrelations for C>0) are clearly above the solid line (C=0). It appears
that for small values of K, a slow rate of coevolution actually increases the overall correlation length of
the landscape as compared to the static case! To confirm this behavior, some additional experiments
were performed with m=50 and K=2 (results not shown). The same situation occurs here as well
(increase in correlation), except for the C=50 case, for which the autocorrelation curve is now below
that of C=0. Thus, this increase in correlation seems to be a real phenomenon for low K and a slow
rate of coevolution.

Indeed, it is known from several studies using genetic algorithms to solve some given problem,
that introducing some form of coevolution can actually lead to a slight increase in the quality of
the obtained solutions (see e.g. [14, 15]). In these models there was no direct gene-to-gene coupling
between coevolving species, but the first species consisted of a population of candidate solutions to
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Figure 3: A grey-scale plot of r1 for the different K and C combinations for m=100. The scale on the
right shows the grey-scale values.
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Figure 4: The autocorrelations for m=100 for K=2 (left) and K=10 (right).

the problem, and the second species of a population of test cases. The fitness of the individuals in
the first population (the solutions) was then determined by the number of test cases from the second
population they are able to solve correctly, and the fitness of the test cases was determined by the
number of solutions they are able to “mislead” (i.e., make the solutions perform poorly). In other
words, the two species formed each others (changing) environment, and are thus environmentally
coupled but not epistatically (sometimes referred to as “host-parasite” coevolution).

Although there is evidence that in some cases it is not only, or not even largely, the coevolutionary
aspect that gave rise to an increase in the quality of the solutions found [16], it is clear that this type
of coevolution can give an advantage over evolution in a static environment. Perhaps this more
“loose” form of coupling (i.e., environmentally instead of epistatically) somehow corresponds to the
above situation of low K and slow coevolutionary rate, thus increasing the overall correlation length
of the landscape, enabling evolution to find slightly better solutions. It would certainly be worth
investigating this question in more detail.

As the plot on the right (K=10) shows, for larger values of K this effect has disappeared again
though, and indeed, for intermediate and large values of K a slow coevolutionary rate does not have
any effect at all on the correlation structure of the fitness landscape.

5.2.2 Intermediate rate of coevolution

Next, consider the case of an intermediate rate of coevolution, or intermediate values of m. Figure 5
shows grey-scale plots of the main autocorrelation values (r1) for m=10 (left) and m=5 (right).

These plots show that there is only a minor effect on the main autocorrelation values, and only for
smaller values of K. In the first two or three columns, the grey-scale for higher values of C becomes
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Figure 5: A grey-scale plot of r1 for the different K and C combinations for m=10 (left) and m=5 (right).
The scale on the right again shows the grey-scale values.

slightly lighter. To have a more detailed view again, figure 6 shows the autocorrelations for m=10
for K=2 (left) and K=10 (right).
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Figure 6: The autocorrelations for m=10 for K=2 (left) and K=10 (right).

From these plots, it is clear that an intermediate rate of coevolution causes the overall correlation
length to decrease compared to the static case, but only significantly so for values of C>K. In other
words, for an intermediate rate of coevolution the internal epistatic interactions are the dominant
ones, and only when the level of external epistasis exceeds the internal level does the coupling start to
have an influence on the overall correlation structure of the landscape. To illustrate this point even
more, figure 7 shows the autocorrelations for K=20 for m=10 (left) and m=5 (right). As the plot on
the left (m=10) shows, there is hardly any appreciable difference at all for the different values of C,
and indeed, for larger values of K the rate of coevolution has to become increasingly faster (m=5,
right plot) to have any effect on the overall correlation structure, and then again only significantly
so for C>K.

5.2.3 Fast rate of coevolution

Finally, consider a fast rate of coevolution, in particular when the coevolving species evolve equally
fast. Figure 8 shows a grey-scale plot for the main autocorrelations (r1) for m=1. Here, it is clear
that the main autocorrelation value decreases quickly with an increasing value of C, and there is a
major effect on the correlation of the landscape in all cases.

To show this effect even more clearly, figure 9 shows the autocorrelations for m=1 for K=2 (left)
and K=20 (right). The correlation length decreases significantly and ever more drastically with larger
values of C, in this case also for C<K. In other words, any level of coupling directly influences the
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Figure 7: The autocorrelations for K=20 for m=10 (left) and m=5 (right).
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Figure 8: A grey-scale plot of r1 for the different K and C combinations for m=1. The scale on the right
again shows the grey-scale values.

correlation structure of the landscape with a fast rate of coevolution, regardless of the amount of
internal epistasis.

To conclude this part of the analysis, we note that for larger values of K (e.g. K=50; results not
shown), there is no appreciable effect, not even for a fast rate of coevolution. This is largely due
to the fact that for larger values of K the correlation of the landscape is already so low (see figures
1 and 2), coevolution has very little room left to change this amount of correlation, neither in a
positive nor in a negative way. In other words, for a high amount of internal epistasis, the landscapes
are already highly rugged and uncorrelated. Adding external couplings is not going to make any
significant difference.

5.3 Partial autocorrelations on coupled landscapes

As with regular NK landscapes, in almost all cases considered here only the first partial autocorrela-
tions a1 were significant, indicating that an AR(1) model is the most appropriate for expressing the
correlation structure of these coupled landscapes (see [6] for a detailed explanation of this argument).
However, there were a few interesting exceptions.

Figure 10 shows the partial autocorrelations for three different cases: a regular NK landscape with
K=0, and two NKC landscapes with m=5 and K=20, C=10 and K=2, C=50, respectively. As the
plot shows, in the first two cases indeed only the first partial autocorrelation is significant (although
off the scale on this plot), and the others all fall well within the plus or minus two times standard
error range (indicated by the horizontal dashed lines). However, for the third case (K=2, C=50), an
interesting pattern can be observed, where every fifth partial autocorrelation seems to be significantly
larger than the rest, with the effect slowly tapering off for larger time lags. Clearly, this reflects the
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Figure 9: The autocorrelations for m=1 for K=2 (left) and K=20 (right).

fact that m=5 was used in this case, i.e., the second (coevolving) species was mutated every five time
steps. Several other low to intermediate K and high C cases show a similar pattern in the partial
autocorrelations.
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Figure 10: The partial autocorrelations for some landscapes for m=5 and various values of K and C (see
legend).

This observation seems to indicate that for highly coupled species with low to intermediate inter-
nal epistasis, the partial autocorrelations can say something about their relative rates of evolution.
Suppose, for example, that the partial autocorrelations of the landscape of the first species show a
period three pattern (similar to the period five pattern observed above), then this could indicate
that the rate of (accepted) mutations in the second species is three times slower than that of the
first species. In other words, there is only one step (accepted mutation) in the second species for
every three steps (accepted mutations) in the first species. Perhaps this could indicate the difference
between a “younger” (recently evolved) and an “older” species, where the younger species still evolves
at a faster rate than the older species in which fewer and fewer mutations will lead to an increase
in fitness. This forms an interesting hypothesis that could, for example, be tested in other simple
models of coevolution.

As the results in this section clearly show, the correlation structure of coupled fitness landscapes
depends very much on the relative rate of evolution of the coevolving species. In other words, there
are multiple time scales involved, as is the case in most evolutionary processes. However, in the
case of static fitness landscapes, these different time scales are often “ignored”, and it is argued that
whenever a species makes an adaptive move, the whole population converges very quickly towards
the new location in the fitness landscape, and everything continues as usual again on a larger time
scale. This is the equivalent of a slow rate of coevolution in our analysis. But, obviously, the situation
becomes different when we consider an intermediate or fast rate of coevolution, and thus our method
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and analysis provide at least one way of distinguishing different time scales in evolution, taking them
into account explicitly.

6 Conclusions and Future Directions

The main conclusions of our analysis can be summarized as follows:

• First of all, the correlation analysis for fitness landscapes as introduced in [6] can be extended
to coupled (i.e., dynamic) fitness landscapes in a simple and meaningful way.

• For a slow rate of coevolution, there is no effect on the correlation structure of the landscape,
except for small values of K where the correlation length of the landscape actually increases.
This could indicate that a “loose” coupling between species can be mutually beneficial. This was
indeed shown in several genetic algorithm studies with environmentally (but not epistatically)
coupled species.

• For an intermediate rate of coevolution, there is only an effect when C>K, in which case the
correlation length of the landscape decreases significantly, with a minor decrease in the main
autocorrelation value r1. When the level of external epistasis is lower than the level of internal
epistasis, it will not have an effect on the overall correlation structure of the landscape.

• For a fast rate of coevolution, any level of external coupling will have a significant negative
effect on the correlation length and the main autocorrelation value, except for very large values
of K (high level of internal epistasis), in which case the landscape already is highly rugged and
uncorrelated anyway.

• In coevolving species with a low level of internal but a high level of external epistasis, the partial
autocorrelations can possibly provide insight into the relative rates of evolution of the different
species. This provides yet another advantage of the extended correlation analysis as introduced
in [6] over the more restricted analyses used elsewhere.

• Finally, the correlation analysis of coupled fitness landscapes as presented here produces mean-
ingful and interesting results that can provide a better understanding of, and lead to testable
hypothesis about, coevolution in general.

Several directions for future research and testing of hypotheses were already indicated in previous
sections. For example, it would be interesting to investigate whether the landscapes of the environ-
mentally coupled species in some of the genetic algorithm studies mentioned [14, 15] indeed show
similarities to the low K, slow rate of coevolution landscapes analyzed here, where the correlation
length actually increases compared to the static case. Furthermore, the hypothesis about the partial
autocorrelations indicating relative rates of evolution in low K, high C landscapes should be tested
in other coupled landscape models. Obviously, it will also be useful to apply to correlation analysis
for coupled fitness landscapes presented here to other coevolutionary models, and relate the results
to, for example, observations from studies on (co)evolutionary dynamics on those landscapes. And
finally, similar to the static case, where much theoretical work is done on the (correlation) structure
of fitness landscapes (see e.g. [17, 18, 19, 20, 21]) an actual theory of the correlation structure of
coupled fitness landscapes should be developed.

Acknowledgments

WH would like to acknowledge funding from the ACI IMPBIO (French Ministry of Research) while
at the LIRMM.

References

[1] S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D. F.
Jones, editor, Proceedings of the Sixth International Congress on Genetics, pages 356–366, 1932.

10



[2] S. A. Kauffman and S. Levin. Towards a general theory of adaptive walks on rugged landscapes.
Journal of Theoretical Biology, 128:11–45, 1987.

[3] S. A. Kauffman. Adaptation on rugged fitness landscapes. In D. Stein, editor, Lectures in the

Sciences of Complexity, pages 527–618. Addison-Wesley, 1989.

[4] S. A. Kauffman. The Origins of Order. Oxford University Press, 1993.

[5] S. A. Kauffman and S. Johnson. Coevolution to the edge of chaos: Coupled fitness landscapes,
poised states, and coevolutionary avalanches. Journal of Theoretical Biology, 149:467–505, 1991.

[6] W. Hordijk. A measure of landscapes. Evolutionary Computation, 4(4):335–360, 1996.

[7] E. D. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the difference.
Biological Cybernetics, 63:325–336, 1990.

[8] G. E. P. Box and G. M. Jenkins. Time Series Analysis, Forecasting and Control. Holden Day,
1970.

[9] C. W. J. Granger and P. Newbold. Forecasting Economic Time Series. Academic Press, 2nd
edition, 1986.

[10] B. Manderick, M. de Weger, and P. Spiessens. The Genetic Algorithm and the Structure of
the Fitness Landscape. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth

International Conference on Genetic Algorithms, pages 143–150. Morgan Kaufmann, 1991.

[11] M. Lipsitch. Adaptation on Rugged Landscapes Generated by Iterated Local Interactions of
Neighboring Genes. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth Inter-

national Conference on Genetic Algorithms, pages 128–135. Morgan Kaufmann, 1991.

[12] W. Hordijk. Correlation analysis of the synchronizing-ca landscape. Physica D, 107:225–264,
1997.

[13] L. Altenberg. Nk fitness landscapes. In T. Back, D. Fogel, and Z. Michalewicz, editors, The

Handbook of Evolutionary Computation. Oxford University Press, 1997. Section B2.7.2.

[14] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D, 42:228–234, 1990.
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