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Abstract

Self-sustaining autocatalytic chemical networks represent a necessary, though

not sufficient condition for the emergence of early living systems. These net-

works have been formalised and investigated within the framework of RAF

theory, which has led to a number of insights and results concerning the like-

lihood of such networks forming. In this paper, we extend this analysis by

focussing on how small autocatalytic networks are likely to be when they first

emerge. First we show that simulations are unlikely to settle this question,

by establishing that the problem of finding a smallest RAF within a catalytic

reaction system is NP-hard. However, irreducible RAFs (irrRAFs) can be

constructed in polynomial time, and we show it is possible to determine in

polynomial time whether a bounded size set of these irrRAFs contain the

smallest RAFs within a system. Moreover, we derive rigorous bounds on the

sizes of small RAFs and use simulations to sample irrRAFs under the binary

polymer model. We then apply mathematical arguments to prove a new re-
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sult suggested by those simulations: at the transition catalysis level at which

RAFs first form in this model, small RAFs are unlikely to be present. We

also investigate further the relationship between RAFs and another formal

approach to self-sustaining and closed chemical networks, namely chemical

organisation theory (COT).

Keywords: Catalytic reaction system, random autocatalytic network,

origin of life

“Individual chemical reactions in living beings are strictly coordinated

and proceed in a certain sequence, which as a whole forms a network of

biological metabolism directed toward the perpetual self-preservation,

growth, and self-reproduction of the entire system under the given en-

vironmental conditions” Oparin (1965)

1. Introduction

A chemical reaction system that is self-sustaining and collectively au-

tocatalytic is believed to represent an important step in the emergence of

early life (Dyson, 1982; Eigen and Schuster, 1977; Kauffman, 1971, 1986).

These systems are defined by two properties: (i) each molecule can be built

up from a small subset of pre-existing ‘food’ molecules by some reaction in

the system, and (ii) each reaction is catalysed by some product of another

reaction (or an element of the food set). Moreover, recent experimental

work has demonstrated at least the possibility (and viability) of such sets

(Ashkenasy et al., 2004; Hayden et al., 2008; Lee et al., 1997; Sievers and
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von Kiedrowksi, 1994; Taran et al., 2010; Vaidya et al., 2012). It is also of

interest to develop a mathematical framework that allows us to study the

entire universe of possible self-sustaining autocatalytic sets, so that general

results can be established, and predictions made. Here, we further explore

one approach (‘RAF theory’) which has provided a tractable and incisive tool

for addressing computational and stochastic questions.

RAF theory grew out of two strands: Stuart Kauffman’s pioneering work

on random autocatalytic networks from the 1970s and 1980s (Kauffman,

1971, 1986, 1993), and analysis of the first emergence of cycles in random

directed graphs by Bollobas and Rasmussen (1989). Both of these earlier

studies were explicitly motivated by origin-of-life considerations. The ap-

proach is related to, but different from chemical organisation theory (COT)

(Contreras et al., 2011; Dittrich and Speroni di Fenizio, 2007) and other for-

mal approaches of a similar flavour, which include Petri nets (Sharov, 1991),

Rosen’s (M; R) systems (Jaramillo et al., 2010; Letelier et al., 2006), and

Eigen and Schuster’s hypercycle theory (Eigen and Schuster, 1977).

In earlier work (Hordijk and Steel (2004) – Hordijk and Steel (2013),

Mossel and Steel (2005); Steel (2000)) we have established a series of results

concerning the structure, discovery and probability of the formation of RAF

sets in a variety of catalytic reaction systems. When such a system contains a

self-sustaining autocatalytic set (an ‘RAF’, defined below), this set can often

be broken down into smaller RAFs until we arrive at the smallest ‘building

block’ RAFs that cannot be broken down any further (c.f. Vasas et al.
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(2012)). In this paper, we investigate the structure of these irreducible RAFs,

and bounds on the size of the smallest RAFs within a catalytic reaction

system.

Along the way, we derive some new facets of RAF theory, exploring fur-

ther its relationship to COT, and the related weaker notions of pseudo-RAFs

and co-RAFs, which can be co-opted by a RAF to form a larger RAF system.

While it is easy to determine whether a chemical reaction system contains an

RAF (in which case there is a unique largest one (Hordijk and Steel, 2004)),

we prove that finding a smallest RAF is an NP-hard problem. Nevertheless,

the structure of the smallest (‘irreducible’) RAFs allows us to present effi-

cient algorithms to find lower bounds on their size, and to determine whether

a given collection contains the smallest RAF in the system.

We begin by recalling some definitions before proceeding to the com-

binatorial and algorithmic aspects of RAFs. We then apply mathematical

arguments and simulations to study the size and distribution of irreducible

RAFs in Kauffman’s random binary polymer model (Kauffman, 1993), and

show that at a level of catalysis at which RAFs first form, small RAFs are

highly unlikely. We end with a short discussion.

2. Definitions

To formalize the notion of a chemical reaction system (CRS), the following

basic notation and definitions are useful:

• Let X = {x1, x2, x3, . . .} be a set of molecule types : each element xi
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represents a different type of molecule.

• Let F ⊂ X be a food set, containing molecule types that are assumed

to be freely available in the environment.

• Let r = a1 + a2 + . . .+ an → b1 + b2 + . . .+ bm be a chemical reaction,

transforming a set of n reactants (molecule types a1, a2, . . . , an) into a

set of m products (molecule types b1, b2, . . . , bm). In principle there is

no restriction on the number of reactants or products, although in the

specific model we use (see below) n and m are at most two.

• Let R = {r1, r2, . . . , rk} be a set of (chemically possible) reactions.

• Let ρ(r) and π(r) denote, respectively, the set of all reactants of r and

the set of all products of r, and for any subset R′ of R, let ρ(R′) =⋃
r∈R′ ρ(r) and π(R′) =

⋃
r∈R′ π(r).

• Let C ⊆ {(x, r)|x ∈ X, r ∈ R} be a catalysis set, i.e., if the molecule-

reaction pair (x, r) ∈ C then molecule type x catalyses reaction r.

A chemical reaction system (or, equivalently, a catalytic reaction system;

CRS) is now defined as a tuple Q = {X,R, C} consisting of a set of molecule

types, a set of (possible, or allowed) reactions, and a catalysis set. Based on

Bonchev and Mekenyan (1994), we can visualise a CRS as a reaction graph

with two types of vertices (molecules and reactions) and two types of directed

edges (from molecules to reactions and vice versa, and from catalysts to the

reactions they catalyse).
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2.1. RAF sets

Informally, a subset of reactions R′ is an RAF (reflexively-autocatalytic

and F -generated) set if it satisfies the following property:

Every reactant of every reaction in R′ can be built up by starting

from F and using just reactions in R′, and so that all reactions are

eventually catalysed by at least one molecule that is either a product

of some reaction in R′ or is an element of F .

To define an autocatalytic set more formally, we first need to define the notion

of “closure”. Informally, the closure of a set of molecule types relative to a set

of reactions, is the initial set of molecule types together with all the molecule

types that can be created from it by repeated application of reactions from

the given set of reactions. More formally, given a CRS Q = {X,R, C}, the

closure clR′(X
′) of X ′ ⊆ X relative to R′ ⊆ R is the (unique) minimal set

W ⊆ X that contains X ′ and satisfies the condition that, for each reaction

r = A→ B ∈ R′ (with A being a set of reactants and B a set of products),

A ⊆ W =⇒ B ⊆ W. Notice that when R′ = ∅ the set clR′(X
′) is still defined,

and it equals X ′.

Our mathematical definition of RAF sets is now as follows (note that this

is the definition from Hordijk et al. (2011), which is slightly modified from the

original definition in Hordijk and Steel (2004)). Given a CRS Q = {X,R, C}

and a food set F ⊂ X, a non-empty subset R′ ⊆ R is said to be:
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Figure 1: A CRS for which the maxRAF consists of the set of three reactions {r1, r2, r3}.
The only other RAF present is the irrRAF {r2, r3}. The singleton reaction {r1} is not an
RAF (but it forms a co-RAF, defined later).

• Reflexively autocatalytic if, for all reactions r ∈ R′, there is at least one

molecule type x ∈ clR′(F ) such that (x, r) ∈ C;

• F -generated if ρ(R′) ⊆ clR′(F );

• Reflexively autocatalytic and F -generated (RAF) for (Q, F ) ifR′ is both

reflexively autocatalytic and F -generated.

Because the union of RAFs for (Q, F ) is also an RAF for (Q, F ) it follows

that any CRS that contains an RAF has a unique maximal RAF called the

‘maxRAF’; any other RAF is called a ‘subRAF’ of this maximal RAF. We

say that an RAF is an irreducible RAF (or, more briefly, an ‘irrRAF’) if no

proper subset is also an RAF. In contrast to the uniqueness of the maximal

RAF, there may be many (indeed exponentially many) irrRAFs (Hordijk
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et al., 2012).

3. Characterising F -generated sets

We have already defined the concept of being F -generated, however, it

will be useful to explore this further for the following reasons:

• to better understand the distinction between RAFs and ‘pseudo-RAFs’

(defined shortly);

• to explain the link between F -generated sets and ‘organisations’ in

chemical organisation theory;

• to provide a characterisation that we will require later in the proof of

our main stochastic theorem (Theorem 4).

Given a CRS Q = (X,R, C) and a food set F , the closure set clR′(F )

has two further equivalent descriptions. Firstly, it is the intersection of all

subsets of X that contain F and that are closed relative to R′. It also has

an explicit constructive definition as follows: clR′(F ) is the final set WK in

the sequence of nested sets F = W0 ⊆ W1 ⊆ · · · ⊆ WK where Wi+1 is equal

to the union of Wi and the set of products of reactions in R′ whose reactants

lie in Wi, and where K is the first value of i for which Wi = Wi+1.

With this in hand, we now examine the definition of F -generated sets of

reactions more closely. Recall from the earlier definitions that a subset of

reactions R′ is F -generated provided that every reactant of every reaction

in R′ lies in clR′(F ). Note that saying R′ is F -generated implies but is
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strictly stronger than the condition that the reactant of each reaction in

R′ is either a molecule in F or it is a product of another reaction in R′. F -

generated is also strictly stronger than requiring that the molecules of X that

are ‘used up’ in maintaining the reactions in R′ is precisely F . An example

that demonstrates both these strict containments is provided in Fig. 2 for

the set R′ = {r1, r2, r3}, which is not F -generated (since clR′(F ) = F ).

We now provide precise characterizations of when a set of reactions is

F -generated.
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Figure 2: (a) The set R′ = {r1, r2, r3} of reactions is not F -generated, for F = {f1, f2, f3}
and X = F ∪ {p1, p2, p3, p4}. (b) The expanded reaction set R = {r1, r2, r3, r4} is F -
generated, for F = {f1, f2, f3, f4, f5}. The (unique) ordering that satisfies the conditions
of Lemma 3.1(iii) (or (iv)) is r4, r2, r3, r1.

Lemma 3.1. Given a CRS Q = (X,R, C), a food set F and a non-empty
subset R′ of R, the following are equivalent:

(i) R′ is F -generated.

(ii) clR′(F ) = F ∪ π(R′).

(iii) R′ has a linear ordering r1, . . . , rk so that the reactants of r1 are molecules
in F , and for each i ∈ {2, . . . , k} the reactants of ri are contained in
cl{r1,...,ri−1}(F ).
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(iv) R′ has a linear ordering r1, . . . , rk so that for each i ∈ {1, . . . , k} each
reactant of ri is either an element of F or is a product of some reaction
rj where 1 ≤ j < i.

Proof: The equivalence (i) ⇔ (ii) is from Hordijk and Steel (2004)

(Lemma 4.3) and the equivalence (iii) ⇔ (iv) is easily verified, as the or-

dering of R that applies for either part, also works for the other (from the

definitions). Thus, to establish this four-way equivalence, it suffices to show

that (i)⇒ (iii), and (iii)⇒ (i).

To establish (i) ⇒ (iii), suppose that R′ is F -generated. We construct

an ordering satisfying (iii) as follows: Let R0 denote the reactions in R′

that have their reactants in F , and for i > 0, let Ri denote the reactions in

R′ that have their reactants in the set Wi −Wi−1, where Wi, i ≥ 0 is the

sequence of nested sets described in the preamble to this lemma. Then take

any ordering on R′ for which the reactions in Ri all come before Ri+1 for

i = 0, . . . , K − 1. This ordering satisfies the property described in part (iii).

To establish (iii) ⇒ (i), we only need to observe that cl{r1,...,ri−1}(F ) ⊆

clR′(F ) for all i > 1, so if ρ(ri) is a subset of the first set, it is necessarily a

subset of the second set. This completes the proof of Lemma 3.1.

We now point out a consequence of this lemma that sheds some light

on why the subset R′ in Fig. 2 fails to be F -generated. Given a CRS Q =

(X,R, C), a food set F and a subset R′ of R, consider the directed graph

G(R′) that has vertex set R′ and an arc from r to r′ precisely if there is a

reactant x of r′ that is a product of r and, in addition, if x 6∈ clR′−{r}(F ).
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This last condition states that molecule x cannot be built up from F using

only the reactions in R′ that do not include r. Note that a vertex of G(R′) is

permitted to have a loop (i.e. an arc from a reaction to itself). As an example

of this graph, for the reactions shown in Fig. 2(a), G(R′) is a directed three-

cycle, while in part (b) of that figure, G(R′) has no directed cycle.

Theorem 1. Given a CRS Q = (X,R, C), a food set F , a non-empty subset
R′ of R is F -generated if and only if the following two conditions hold:

(a) every reactant of a reaction in R′ is either an element of F or is a
product of some reaction in R′; and

(b) the graph G(R′) has no directed cycle (including loops).

Proof: Suppose thatR′ is F -generated. Then condition (a) in the theorem

follows by part (ii) of Lemma 3.1; moreover, there exists an ordering r1, . . . , rk

of R′ that satisfies the condition described in part (iii) of that lemma. Now,

if (ri, rj) is an arc in G(R′), we must have i < j, since otherwise, if i ≥ j,

part (iii) of Lemma 3.1 gives:

ρ(rj) ⊆ cl{r1,...,rj−1}(F ) ⊆ clR′−{ri}(F ),

and the containment ρ(rj) ⊆ clR′−{ri}(F ) would preclude the arc (ri, rj) from

G(R′). So, if G(R′) had a directed cycle (i1, i2), (i2, i3), . . . , (ir, i1), we would

have: i1 < i2 < . . . < i1, a contradiction. Thus ifR′ is F -generated, condition

(b) in the theorem also holds.

Conversely, suppose that R′ satisfies conditions (a) and (b). We first

show that there exists a reaction r∗ ∈ R′ that has all its reactants in F ,
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i.e. ρ(r∗) ⊆ F . Suppose to the contrary that this were not the case (we will

show this contradicts condition (b)). Then for every reaction r in R′, we can

select a molecule x(r) 6∈ F that is a reactant of r. Moreover, by property

(a) and the condition that x(r) 6∈ F it follows that x = x(r) is the product

of some other reaction, which we will write as r′(x). Thus, starting with

any given reaction, r0, consider the alternating sequence of molecules and

reactions (xi, ri), i ≥ 0 that we generate from r0 by setting xi = x(ri) and

ri+1 = r′(xi). Since R′ is finite, this sequence must have rk = rl for some

0 ≤ k < l. Moreover, we cannot have xi 6∈ clR′−{ri+1}(F ) for all i ∈ [k, l − 1];

otherwise, in the graph G(R′), there would be an arc from ri+1 to ri for

all i ∈ [k, l − 1] and so we would obtain a directed cycle in G(R′), and by

part (b), no such cycle exists. This contradiction ensures there exists some

molecule xi 6∈ F for i ∈ [k, l − 1] for which xi ∈ clR′−{ri+1}(F ). However,

if the closure of F under any set of reactions contains a molecule outside of

F , then some reaction in the collection must have all its reactants in F (by

Lemma 3.1). This justifies our claim that there is a reaction r∗ ∈ R′ with

ρ(r∗) ⊆ F .

We now use induction on |R′| to establish that conditions (a) and (b)

imply that R′ is F -generated. For |R′| = 1 and the non-existence of a loop

from this reaction to itself (by (b)), we see that R′ is F -generated. Therefore

suppose that the implication holds for any |R′| < n satisfying (a) and (b), and

that we have |R′| = n. Now, consider R′′ = R′ − {r∗} and F ′ = F ∪ π(r∗),

where r∗ is the reaction in R′ with ρ(r∗) ⊆ F . Notice that R′′ satisfies
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property (a). Moreover, we claim that property (b) also holds for R′′ since

if (r, r′) is an arc of G(R′′) then it is also an arc of G(R′). To verify this,

observe that if (r, r′) is an arc of G(R′′) then there exists a reactant x of r′

that is a product of r and for which x 6∈ clR′′−{r}(F
′). However:

clR′′−{r}(F
′) = clR′−{r,r∗}(F

′) = clR′−{r}(F ),

and so x 6∈ clR′−{r}(F ), which implies that (r, r′) is indeed an arc of G(R′).

Consequently, the arcs of G(R′′) are a subset of the set of arcs of G(R′)

that do not contain r∗ and so G(R′′) cannot contain a directed cycle (or else

G(R′) would).

Thus, sinceR′′ satisfies properties (a) and (b), it follows (by the induction

hypothesis) that R′′ is F ′-generated, and this implies that R′ is F -generated.

This completes the proof of the converse result.

4. Relationship with chemical organisation theory (COT)

Chemical organisation theory (COT) (Dittrich and Speroni di Fenizio,

2007) provides another way to study chemical reaction systems, and the

concept of a (chemical) organisation shares two key properties with RAFs:

closure and self-maintenance (for precise definitions, see Dittrich and Sper-

oni di Fenizio (2007), and for recent relevant results, see Contreras et al.

(2011) and Kreyssig et al. (2012)). However, the latter concept (‘self mainte-

nance’) is defined somewhat differently: while RAFs require the property of

being F -generated, an organisation is defined as self-sustaining under chemi-
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cal dynamics, as encoded by the stoichiometric matrix. More precisely, if S is

the stoichiometric matrix for the system, with its rows indexed by molecules

and its columns by reactions, then self-maintenance requires a column vector

v with strictly positive coordinates for which:

Sv ≥ 0 (1)

In words, this is the condition that the reactions can proceed at positive

rates, so that the net rate of production of each molecule in the system is

not less than the rate at which it is used up (otherwise such a molecule

would disappear from the system). This is a weaker requirement than being

F -generated, since self-maintenance requires only that the system be self-

sustaining once it exists, but does not address the question of whether the

system could form in the first place from a set of molecules in F ; we describe

an example to illustrate this shortly.

A second difference is that organisations allow but do not explicitly re-

quire reactions to be catalysed, though an extension to allow this has been

discussed recently in Contreras et al. (2011). Note that RAFs easily extend

to allow some reactions not to be catalysed by introducing a putative new

element of F to act as a catalyst for any reactions that otherwise do not

require catalysis.

A third important difference is algorithmic and we will discuss this shortly

(a further minor difference is that organisations are subsets of molecules,

while an RAF is a subset of reactions and molecules). The following lemma
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shows that there is a close but not identical relationship between F -generated

sets and organisations.

Lemma 4.1. Given a CRS Q = (X,R, C) and food set F , consider the
set RF := {∅ → f : f ∈ F} of reactions that formally generate F without
using other molecules in X.

(i) If R′ is F -generated then the set of molecules clR′(F ) forms an organ-
isation, for the reactions R′ ∪RF .

(ii) It is possible for a set M of molecules to form an organisation for a set
of reactions R′ ∪RF but for R′ to fail to be F -generated.

Part (i) of the lemma was established in Contreras et al. (2011) (Corol-

lary 1). Here, we show how it also follows as a consequence of Lemma 3.1.

Firstly, if R′ is F -generated, then it is closed by the implication (i) ⇒ (ii)

in Lemma 3.1. Moreover, we may order the reactions in R′ ∪ RF so that

the reactions in RF come first (in any order) and so that the order of the

subsequent reactions from R′ is such that the reactants of each reaction are

either elements of F or products of earlier reactions – the existence of such

an ordering for R′ is provided by the implication (i) ⇒ (iv) in Lemma 3.1.

Consider the corresponding stoichiometric matrix S. Then the first non-zero

element in each row of S is +1. Now for any real matrix with this last prop-

erty, there is a strictly positive column vector v for which Sv > 0, since if

S has c columns, and if the largest absolute value of any negative entry of

S is b then we can take v to be the strictly positive vector that has its i-th

coordinate given by: vc−i = (b+ 1)i for i = 0, . . . , c− 1.

Part (ii) is established by considering the example shown in Fig. 2(a) with

M = F∪{p1, p2, p3, p4} andR′ = {r1, r2, r3}. OrderingM as f1, f2, f3, p1, p2, p3, p4
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and R′ ∪ RF as ∅ → f1, ∅ → f2, ∅ → f3, r1, r2, r3, we obtain the following

7 × 6 stoichiometric matrix (rows are indexed by molecules; columns, by

reactions):

S =



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

0 0 0 1 −1 0

0 0 0 0 1 −1

0 0 0 −1 0 1

0 0 0 1 0 0


It is now clear that Sv = [0, 0, 0, 0, 0, 0, 1]T for the strictly positive vector

v = [1, 1, 1, 1, 1, 1]T and therefore the self-maintenance inequality (1) holds.

Since M is closed relative to the six reactions, it follows that M forms an or-

ganisation, butR′ fails to be F -generated, since clR′(F ) = F . This completes

the proof.

A further difference between COT and RAF theory is that determining

whether or not a CRS contains a non-empty organisation is an NP-complete

problem (c.f. Centler et al. (2008), Section 6.2), while determining whether

there exists an RAF (necessarily non-empty) within any CRS can be decided

by a polynomial time algorithm. We describe this now.
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4.1. The RAF algorithm and the map R′ 7→ s(R′)

The usual RAF algorithm (Hordijk and Steel (2004); Hordijk et al. (2011))

starts with the full set of reactions and iteratively prunes out reactions until

the set stabilises. For completeness, we describe this explicitly now. Given a

CRSQ = (X,R, C) and a food set F , define the following nested (decreasing)

sequence of subsets of reactions R0,R1, . . . , RK as follows:

• R0 = R; and for i ≥ 0,

• Ri+1 = {r ∈ Ri : r has all its reactants and at least one catalyst in clRi
(F )};

• K is the first value i for which Ri = Ri+1.

It can be shown that if RK = ∅ then R contains no RAF; otherwise, RK

is the unique maximal RAF contained in R (for further details, see Hordijk

and Steel (2004); Hordijk et al. (2011)). Throughout this paper, we will let

s(R′) denote the terminal set (RK) obtained by applying this process to an

arbitrary subset R′ of R.

5. Pseudo-RAFs and co-RAFs

Note that an RAF R′ for (Q, F ) satisfies the following two properties:

(i) Every reaction in R′ is catalysed by the product of another reaction

from R′ or by an element of F ; and

(ii) Each reactant of every reaction in R′ is either an element in F or a

product of another reaction in R′.
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We will call any subset R′ of R that is non-empty and that satisfies

properties (i) and (ii) a pseudo-RAF for (Q, F ). Not every pseudo-RAF is

an RAF, as the example in Fig. 3 shows. However, pseudo-RAFs satisfy

some of the properties of RAFs; in particular, the union of two or more

pseudo-RAFs for (Q, F ) is a pseudo-RAF for (Q, F ). It follows that any

pair (Q, F ) either contains no pseudo-RAF (in which case (Q, F ) contains

no RAF either) or (Q, F ) has a unique maximal pseudo-RAF that contains

all other pseudo-RAFs of (Q, F ) as well as the unique maximal RAF for

(Q, F ).
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Figure 3: A pseudo-RAF which fails to be an RAF

An analogous algorithm to the RAF algorithm applies for constructing

the maximal pseudo-RAF (when it exists), the only change being that clRi
(F )

is replaced by F ∪ π(Ri) in the construction of Ri+1 from Ri (where π(Ri)

is the set of products of reactions in Ri).
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The RAF and pseudo-RAF algorithms have a similar flavour to the ‘unit

propagation’ method of solving the propositional logic problem ‘HORN-SAT’,

and in Hordijk and Steel (2012a) we showed that HORN-SAT can be solved

by an extension of the RAF algorithm.

5.1. co-RAFs

Although a pseudo-RAF cannot become established by itself (since it is

not F -generated), it can nevertheless become established in the presence of

another RAF. This property is not unique to pseudo-RAFs, and we formalise

and investigate this notion as follows.

Given a CRS Q = (X,R, C) and a food set F , we will say that a subset

R′ of R is a co-RAF for (Q, F ) if R′ is a non-empty set for which there exists

some RAF R1 for Q, which is disjoint from R′ and whose union with R′,

R1 ∪R′, forms an RAF for Q.

A simple example of a co-RAF is the set {r1} in Fig. 1. Informally, a

co-RAF is a system that may not have enough structure to form an RAF by

itself, but which another (disjoint) RAF can co-opt to form a larger RAF.

Note that a co-RAF may fail to be an RAF because either a reactant or a

catalyst (or both) can fail to be in the closure of F ; in either case, R1 can

provide the missing F -generated reactant or catalyst.

The relationship between an RAF R1 and an associated co-RAF R′ is

similar to the relationship between a ‘viable core’ and an associated ‘periph-

ery’ in Vasas et al. (2012). The requirement that R′ and R1 are disjoint in

the definition of a co-RAF is not a serious restriction, since if R′ ∪R1 is an
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RAF for (Q, F ), where R′ overlaps (but is not strictly contained within) an

RAF R1, then R′ − (R′ ∩R1) is a co-RAF for (Q, F ).

Determining whether a given subset R′ of R is a co-RAF for (Q, F ) can

be solved in polynomial time by virtue of the following result (the equivalence

of parts (i) and (ii)). We also give two other alternative descriptions of co-

RAFs. The proofs of these results are presented in the Appendix.

Proposition 5.1. Given a CRS Q = (X,R, C) and a food set F , let R′
be a non-empty subset of R. The following are equivalent:

(i) R′ is a co-RAF for (Q, F );

(ii) s(R−R′) 6= ∅ and R′ ∪ s(R−R′) is an RAF for (Q, F );

(iii) R′ = RB −RA for two RAFs RA,RB for (Q, F ), where RA ⊂ RB;

(iv) R′ is an RAF for (Q, F ′) where F ′ = F ∪ π(R1), for some RAF R1

for (Q, F ) that is disjoint from R′.

Note that the equivalence (i) ⇔ (iii) provides a simple way to generate

co-RAFs: any non-maximal RAF RA for Q has a co-RAF; simply let RB be

the maximal RAF, and take R′ = RB −RA.

6. Minimal RAFs and irrRAFs

Given a CRS Q = (X,R, C) and a food set F , we can find an irrRAF

efficiently (i.e. in polynomial time), but finding a minimal-sized RAF is

much harder – we will show it is an NP-hard problem even to determine this

minimal size. Nevertheless, it is possible to test whether a given irrRAF for

(Q, F ) is the only irrRAF for (Q, F ) – and if it is, then it is necessarily a
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minimal sized RAF. More generally, if we generate irrRAFs for (Q, F ) (each

in polynomial time), and have found only a relatively small number of them

(e.g. < 10 or so) then it is possible to test whether these are the only irrRAFs

for (Q, F ) and, if so, the one(s) of smallest size are the minimal-sized RAFs

for (Q, F ). We now show how this can be solved efficiently (in polynomial

time), provided that we bound the number of irrRAFs.

6.1. Do we have all the irrRAFs?

Suppose that a CRS (X,R, C) with a food set F ⊆ X, has an RAF. Let

R1,R2, . . .Rk be a collection of distinct irrRAFs that have been constructed

from this RAF (e.g. by our search algorithm). We would like to be able to

determine whether these are all the irrRAFs for (X,R, C, F ). The following

result provides a way to do this for moderate values of k. Recall that for a

subset R′ of R, s(R′) is the result of applying the RAF algorithm to R′.

Theorem 2. Suppose that a CRS (X,R, C) with a food set F , has an RAF.
Then a collection R1, . . . ,Rk of distinct irrRAFs constitutes the set of all
the irrRAFs for (X,R, C, F ) if and only if the following condition holds:

For all (r1, r2, . . . , rk) ∈ R1 ×R2 × · · · × Rk, we have

s(R− {r1, r2, . . . , rk}) = ∅.

Proof: Suppose first that for some (r1, r2, . . . , rk) ∈ R1 ×R2 × · · · × Rk we

have s(R−{r1, r2, . . . , rk}) 6= ∅. Then s(R−{r1, r2, . . . , rk}) is an RAF and

so it contains at least one irrRAF, say R′. Since

R′ ⊆ s(R− {r1, r2, . . . , rk}) ⊆ R− {r1, r2, . . . , rk},
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R′ cannot equal Ri for any i, since R′ does not contain ri, but Ri does.

Thus, R1, . . . ,Rk does not constitute the set of all irrRAFs of (X,R, C, F ).

Conversely, suppose that R1, . . . ,Rk is not the set of all irrRAFs. Let

R′ be any other irrRAF. Then Ri is not strictly contained within R′ for

any i because otherwise R′ would not be an irrRAF. Thus for each i, there

exists some reaction ri ∈ Ri − R′ and thus a sequence (r1, r2, . . . , rk) ∈

R1 × R2 × · · · × Rk. Now consider s(R − {r1, r2, . . . , rk}). Since R′ is a

subset of R− {r1, r2, . . . , rk}), it follows that

R′ = s(R′) ⊆ s(R− {r1, r2, . . . , rk}),

and so s(R− {r1, r2, . . . , rk}) 6= ∅. This completes the proof.

Remark: For any given value of k, determining whether or not we have

all the irrRAFs can be solved in polynomial time (in the size of the CRS).

Of course, the exponent in the polynomial involves k, so it would also be

interesting to see if this exponential dependency on k can be removed (and,

if not, whether the problem is fixed parameter tractable in k).

6.2. Finding a smallest RAF is hard

Given a CRS and a food set (Q, F ), finding a largest RAF can be solved

by a polynomial time algorithm. This raises an obvious question: is there

an efficient way to find the smallest RAF for (Q, F ), or at least to calculate

its size? A related question replaces ‘smallest RAF’ with ‘smallest irrRAF’,

but it is clear that any smallest RAF must also be irreducible so the two

questions are equivalent. Consider then the decision problem:
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MIN-RAF

INSTANCE: A catalytic reactions system and food set (X,R, C, F ), and

a positive integer k.

QUESTION: Does R contain a subset of size at most k that forms an

RAF for (X,R, C, F )?

Theorem 3.

(i) The decision problem MIN-RAF is NP-complete.

(ii) Counting the number of sub-RAFs (or smallest sub-RAFs) of an arbi-
trary RAF is #P-complete.

The proof of this theorem involves a reduction of MIN-RAF to the graph

theory problem VERTEX COVER, by associating with each CRS a graph

that has its vertex covers of size K in one-to-one correspondence with the

sub-RAFs of the CRS of size K+constant. The details of the construction

and the full proof of Theorem 3 are provided in the Appendix.

6.3. Lower bounds on the size of RAFs

In the light of Theorem 3, an interesting question is whether we can

efficiently compute lower bounds on the size of an RAF. The first lower

bound is easily computed.

Lemma 6.1. Consider a catalytic reaction system Q and a food set F . Let

R0 = {r ∈ R : s(R− {r}) = ∅}.

Then every RAF for (Q, F ) has size at least |R0|.
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Proof: Let R′ be an RAF for (Q, F ). Suppose that r ∈ R0. If r ∈ R − R′

then R′ = s(R′) ⊆ s(R − {r}) = ∅, which is not possible, since an RAF is

non-empty, by definition. Thus, r ∈ R′. Since this holds for all r ∈ R′ it

follows that R0 ⊆ R′, and so |R0| ≤ |R′|. This completes the proof.

Part (ii) of the following Lemma provides a further computable lower

bound on the smallest RAF, if we require the RAF to have the additional

property that none of its reactions are catalysed by a food molecule. Given

a CRS Q, let G′(R′) be the graph with the vertex set R′ and with an arc

from reaction r to reaction r′ precisely if some product of r is a catalyst of r′.

Part (i) of the lemma is essentially the ‘Loop Theorem’ of Contreras et al.

(2011) (Theorem 2).

Lemma 6.2. Consider a catalytic reaction system Q = (X,R, C) and a food
set F .

(i) If R′ is an RAF for (Q, F ) and no reaction in R′ is catalysed by any
food molecule then G′(R′) contains a directed cycle.

(ii) Provided that s(R) 6= ∅ (i.e. (Q,F ) has an RAF), the smallest RAF
for (Q, F ) for which no reaction is catalysed by a food molecule is at
least as large as the length of the shortest directed cycle in G′(s(R)),
and this can be computed in polynomial time in the size of Q.

Proof: Part (i): A classic, elementary result (c.f. Bang-Jensen and Gutin

(2001) Proposition 1.4.2) states that any digraph that has no vertex of in-

degree 0 must have a directed cycle. Now if r ∈ R′ then r has a catalyst in

clR′(F ) and so this catalyst is either the product of some reaction in R′ or it

is in F . However, the latter possibility is ruled out by the stated assumption
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concerning R′. Thus each vertex of G′(R′) has positive in-degree and so this

digraph has a directed cycle.

Part (ii): Suppose R′ is the smallest RAF for (Q, F ). From part (i) R′

contains a directed cycle of some length k, so |R′| ≥ k. Moreover, since

R′ ⊆ s(R), k is at least the size of the smallest directed cycle in G′(s(R)), as

claimed. Moreover, since s(R) can be computed in polynomial time (by the

RAF algorithm from Section 4.1), and thus G′(s(R)) can be also, one can

find the shortest directed cycle in this graph by an application of the Floyd–

Warshall algorithm, or via Dijkstra’s algorithm (see, for example, Bang-

Jensen and Gutin (2001)).

7. Minimal RAFs in the binary polymer model

To investigate the issue of the smallest RAFs empirically, we used the

binary polymer model to collect statistics on the sizes of RAF and irrRAF

sets. This model has all binary sequences of length at most n as its molecules,

and the reactions consist of ligation reactions (joining two sequences to form

a longer sequence), together with the reversal of this operation (cleavage

reactions, in which a sequence is split into two subsequences). Examples

of ligation and cleavage reactions are 0101 + 001 → 0101001 and 11110 →

111 + 10, respectively.

In this model, a ligation reaction and its associated cleavage reaction are

often regarded as the same (reversible) ‘cleavage-ligation’ reaction. We let

R = Rn denote this set of cleavage-ligation reactions, and for a subset R′ of
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Rn, the set π(R′) will be taken to be the set of of products of the cleavage

and ligation reactions associated with R′ (and so the closure of F relative

to R′ is the closure of F relative to the union of the associated cleavage and

ligation reactions).

In the simplest form of this model, each molecule x catalyses any given

cleavage-ligation reaction r independently with probability p = pn, which

depends on n. The food set F is usually chosen to be all binary sequences

of length at most t for a small value of t (typically, t = 2, in which case

|F | = 6).

In previous work, we already studied how the probability of RAF sets

existing in this model scales with the value of n (the maximum length of

molecules). Here, we simply chose one value (n = 10) and computed the

sizes of RAF sets for various values of p (the probability that a given molecule

catalyses a given cleavage-ligation reaction) or, equivalently, the level of catal-

ysis f = p|R| (the average number of reactions catalysed per molecule).

Fig. 4 shows the average sizes of RAF sets (black squares) and irrRAF sets

(crosses) for increasing levels of catalysis. These data points are averages over

1000 instances of the model for each value of p. When the level of catalysis is

too low (f < 1.20), no RAF sets are found at all, i.e., their sizes are equal to

zero. However, at a level of catalysis just above f = 1.20, the first RAF sets

are starting to show up. Initially, they are found in only 6 out of 1000 model

instances, but with increasing levels of catalysis f , they become more and

more frequent, and their sizes seem to increase linearly with f . In contrast,
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the average size of irrRAFs remains constant (for each non-empty RAF set,

one (arbitrary) irrRAF set was generated) as the rate of catalysis increases

across this narrow interval.
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Figure 4: The average sizes of RAF and irrRAF sets for increasing levels of catalysis for
n = 10 in the binary polymer model.

An interesting feature of Fig. 4 is that the sizes of the RAF sets when

they first start appearing (around f = 1.20) are already quite large: 1222

reactions on average in the six RAF sets and 624 reactions in the correspond-

ing six irrRAF sets (with |R| = 16388 for the full reaction set). So, it seems

there are no “small” RAFs when they are only just starting to appear. This

observation is formalised in the following theorem, which shows that at the

catalysis levels at which RAFs have a moderate probability of occurring, the
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smallest RAFs have a size that grows exponentially with n.

Theorem 4 (Threshold catalysis RAFs have exponential size in n).

Consider the binary polymer model Qn for sequences up to length n. Select
any fixed value v < 1 and then select the catalysis probability p = pn so that

Pr(∃ RAF for Qn) = v.

Then, for any constant c < 1
3
:

Pr(∃ RAF R′ for Qn : |R′| ≤ 2cn)→ 0,

as n→∞.

Proof: For any subset R′ of Rn with s = |F ∪ π(R′)| we have |clR′(F )| ≤ s,

and so the probability that an arbitrary reaction r ∈ R′ is catalysed by at

least one element of clR′(F ) is at most 1 − (1 − pn)s. Consequently, if, in

addition, R′ has size k, the probability that R′ is reflexively autocatalytic

is at most (1 − (1 − pn)s)k. Now, we can provide a further upper bound on

this last probability by an expression that involves just k (and not s) by

observing that:

(1− (1− pn)s)k ≤ (spn)k ≤ [(3k + |F |)pn]k, (2)

by noting that s ≤ 3k + |F |, since each reaction in R′ is associated with at

most three distinct molecules.

In summary, the probability that any subset R′ of Rn of size k is reflex-

ively autocatalytic is, at most:

[(3k + |F |)pn]k. (3)
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Let Sn,k be the number of subsets of Rn of size k that are F -generated.

Boole’s inequality, combined with the upper bound (3), implies that the

probability that Qn has an RAF of size k is bounded above by: Sn,k · [(3k +

|F |)pn]k. Thus:

Pr(∃ RAF R′ for Qn : |R′| ≤ m) ≤
m∑
k=1

Sn,k · [(3k + |F |)pn]k.

Now, the value of pn for which Pr(∃ RAF for Qn) = v is bounded above by

λvn/|Rn| for some value λv dependent only on v (by Mossel and Steel (2005)

[Theorem 4.1], and Hordijk and Steel (2004) [Proposition 8.1]). Thus:

Pr(∃ RAF R′ for Qn : |R′| ≤ m) ≤
m∑
k=1

Sn,k · [(3k + |F |)λvn/|Rn|]k. (4)

Now, by Lemma 3.1, any set of reactions is F -generated if and only if the

reactions can be linearly ordered so that every reaction in the sequence has

its reactants provided either from F or from the products of earlier reactions

in the sequence (or both).

Therefore, Sn,k is bounded above by the collection of ordered sequences

r1, r2, . . . , rk where, for all j : 0 ≤ j < k:

(*) rj+1 is a cleavage or ligation reaction involving one or two (respectively)

molecules of Xj := F ∪ π({r1, . . . , rj}) (taking X0 = F ).

Now, each reaction in the sequence r1, r2, . . . , rk creates, at most, two new

molecules, and so |Xj+1| ≤ |Xj| + 2 for all j. Since X0 = F , we have for all
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0 ≤ j ≤ k − 1:

|Xj| ≤ |F |+ 2j, (5)

Now, given r1, . . . , rj (where j < k), the number of possible choices for rj+1

to satisfy condition (*) above is, at most:

|Xj|2 + n · |Xj|,

since the first term in this sum is an upper bound on the number of possible

ligation reactions, while the second term is an upper bound on the number of

cleavage reactions. Combining this with (5) gives the following upper bound

on the number of sequences r1, r2, . . . , rk satisfying (*).

k−1∏
j=0

[
(|F |+ 2j)2 + n(|F |+ 2j)

]
≤ [(|F |+ 2k)(n+ |F |+ 2k)]k ≤ (n+|F |+2k)2k,

and so

Sn,k ≤ (n+ |F |+ 2k)2k.

Applying this inequality to (4), with the asymptotic equivalence |Rn| ∼

n2n+1, gives:

Pr(∃ RAF R′ for Qn : |R′| ≤ m) ≤
m∑
k=1

[(3k + |F |)λv(n+ |F |+ 2k)2/2n+1]k.

(6)

Notice that we can provide an upper bound for the term on the right by the

expression:

∞∑
k=1

[(3m+ |F |)λv(n+ |F |+ 2m)2/2n+1]k = θ/(1− θ),
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where θ = [(3m + |F |)λv(n + |F | + 2m)2/2n+1]. It follows that if m ≤ 2cn

for c < 1
3
, then θ (and thereby θ/(1 − θ)) converges to zero as n → ∞, and

therefore so too does the expression for the probability in (6). This completes

the proof.

Comments

• This result is interesting in the light of Theorem 11 of Bollobas and

Rasmussen (1989), as the probability that the length of a first cycle is

k when a first cycle appears in a random digraph is 1/k(k + 1) + o(1),

and so short cycles have considerable probability in that model.

By contrast, when the first RAFs appear, there are no small ones, since

any RAF requires the simultaneous satisfying of two properties: it must

be reflexively autocatalytic and also F -generated; the former property

is equivalent to the existence of a directed cycle in the catalysis graph

(at least in the case p(x, r) = 0 for x ∈ F ); while there might be a

small cycle, it is unlikely to be F -generated.

• Theorem 4 provides an interesting complement to the earlier Theo-

rem 3, which showed that there is, in general, no efficient way to deter-

mine the size of the smallest RAF in a CRS. Thus, it could be difficult

to exclude the possibility a small RAF in the binary polymer model

for large values of n, by searching for the smallest irrRAFs. However,

Theorem 4 provides a theoretical guarantee that, with high probability,

there will be no small RAFs when they first appear within this model.
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• The final inequality in the proof of Theorem 4 allows us to place explicit

bounds on the likely minimal size of RAFs for finite values of n. For

example, for n = 40, the probability that there exists an RAF of size

1000 when the existence of an RAFs has a probability of 0.5 is less

that 0.01 (taking |F | = 6 and the conservative value for λv of 1.7 from

Theorem 4.1(ii) of Mossel and Steel (2005)).

• It is easy to show that when the rate of catalysis becomes sufficiently

large, we will expect to find small RAFs in the binary polymer model.

Thus the initially largely flat line for irrRAF sizes in Fig. 4 must even-

tually decrease to small values (in the limit of size 1) as the rate of

catalysis continues to increase. Moreover, small catalytic reaction sys-

tems (of size 16) that form RAFs (and which contain even smaller

RAFs) have recently been discovered in real RNA replicator systems

(Vaidya et al., 2012). That such small sets form RAFs can be partly

explained by the high catalysis rate (Hordijk and Steel, 2013).

7.1. Distribution of irrRAF sizes

With Theorem 3 above, we proved that finding the smallest (irr)RAF set

is a hard problem, so we cannot hope to have a polynomial time algorithm

to do this. However, it is still possible to get an idea of the distribution

of the sizes of the irrRAF sets that exist inside an RAF set. This can be

done as follows. In Hordijk and Steel (2004), we described a polynomial time

algorithm for finding one possible irrRAF in a given RAF R′ by removing

one reaction ri from R′ and applying the RAF algorithm to the set R′−{ri}.
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If this results in an empty set (s(R′−{ri}) = ∅), then reaction ri is essential

and needs to remain in R′. Otherwise, replace R′ by the non-empty subRAF

s(R′ − {ri}). Now repeat this procedure with every next reaction ri in R′

until all reactions have been considered. The result of this is an irrRAF of

R′. This algorithm was used to generate the data on irrRAF sizes in Fig. 4.
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Figure 5: Histograms of the sizes of 1000 irrRAFs in two RAF sets when they first start
to appear in the binary polymer model.

Note that the particular irrRAF in R′ that is found by this algorithm

depends on the order in which the reactions ri ∈ R′ are considered for pos-

sible removal. So, by repeating the above algorithm a number of times and

randomly re-ordering the reactions inR′ each time, we can generate a sample

of irrRAFs of R′. Fig. 5 shows two histograms of the sizes of 1000 irrRAFs

generated this way from two of the RAF sets that were found at a level of

catalysis of about f = 1.20, i.e., when RAF sets are just starting to show up.

In both cases, there appears to be a fairly wide range of irrRAF sizes

(with a size difference of roughly 150 reactions between the smallest and the
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largest irrRAFs). An interesting feature in the second histogram (right) is the

bimodal distribution of the irrRAF sizes. Since these results are only from

random samples, there is no guarantee that they indeed contain the smallest

irrRAF. However, the fact that even the smallest size in these samples is

still rather large (well over 500 reactions) is probably a good indication that,

indeed, there are no small RAFs when they just start appearing.

7.2. Biological relevance

This paper focuses primarily on mathematical aspects of RAF sets, in

particular the (expected) sizes of the smallest, or irreducible RAF sets. One

might ask what the biological or chemical relevance is of such investigations,

or of the RAF framework in general.

In previous work, we already showed that chemically more realistic ex-

tensions can easily be added to the binary polymer model, such as template-

based catalysis. In this case, for a molecule to be a potential catalyst of a

reaction, it needs to match a certain number of bits around the reaction site

(similar to the formation of complementary base pairs in RNA molecules).

However, this additional constraint does not change the main RAF emer-

gence results in any significant way (Hordijk et al., 2011). Moreover, the

required levels of catalysis in this template-based version of the model can

be predicted analytically from the purely random model (Hordijk and Steel,

2012b).

More importantly, though, the RAF framework can be directly and mean-

ingfully applied to real chemical systems. In Vaidya et al. (2012), an experi-
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mental system of catalytic RNA molecules (ribozymes) was described which

spontaneously forms cooperative (autocatalytic) networks. We have mod-

eled this system using the RAF framework, not only reproducing the main

experimental results, but also providing additional insights and predictions

that would be difficult to obtain from experiments alone (Hordijk and Steel,

2013). Those results thus form a first and important step towards merging

experimental and theoretical lines of work on autocatalytic sets in the con-

text of the origin of life. In the current paper, we have further developed the

theoretical line of work.

8. Concluding comments

RAF theory provides a way to address one aspect of the complex question,

how did life arise? The existence of RAFs does not represent a sufficient

condition, but it would seem to be a necessary one. Moreover, the approach is

sufficiently general that it can be applied to other emergence phenomena both

inside chemistry and in quite disparate fields (for an application to a ‘toy’

problem in economics, see Hordijk and Steel (2012a)). RAFs are based on two

key ideas – every molecule must be able to be built up from the available set of

‘food’ molecules by reactions from the set, and each reaction must ‘eventually’

be catalysed. Here ‘eventually’ refers to the fact that some reactions may

need to proceed uncatalysed (at a lower rate) in order to get the system going,

but eventually, all reactions are catalysed. A stronger requirement would be

that all reactions must be catalysed by the available molecules as the system
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develops (from the food molecules or products of reactions that have already

occurred). This notion of a ‘constructively autocatalytic F -generated’ (CAF)

set from Mossel and Steel (2005) seems an unnecessarily strong condition

(since reactions can generally proceed, at a lower rate, without catalysis) and

the mathematical properties of CAFs (and the probability that they form) are

quite different from RAFs (Mossel and Steel, 2005). A weaker requirement

is that only some reactions need to be catalysed – this fits perfectly easily

within the current RAF framework, as we may simply formally allow a food

molecule to act as a putative catalyst for those reactions.

Another weakening of the RAF concept is to consider a closed chemical

reaction system, which, once established, will continue to be self-maintaining.

This underlies the notion of an ‘organisation’ in chemical organisation theory.

The property of RAFs of being F -generated was shown in Contreras et al.

(2011) to imply the property of being an organisation; we have shown here

that the converse need not hold – in other words, an organisation may not

be able to be built starting just with the food set, without the presence of

some other reactant to get it started. This property of an organisation has

a superficial similarity to the property that a RAF can allow one or more

some reactions to proceed uncatalysed until the catalyst is formed. However,

there is an important difference, since an uncatalysed reaction can proceed

(at a lower rate), while this a reaction that lacks one of its reactants cannot

take place.

The focus of this paper has been on small RAFs, as these are, in some
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sense, the ‘simplest’ systems that could be of interest in origin-of-life studies.

It is of interest to know whether within some CRS that harbours an RAF,

there is a very small one present, or instead whether all subRAFs are quite

large. The smallest RAFs are irreducible, though not all irreducible RAFs are

of the smallest size. In contrast to the maximal RAFs, where there is a unique

object (maxRAF) that can be constructed in polynomial time (by the RAF

algorithm), there may be exponentially many irreducible RAFs, and finding

a smallest RAF is, in general, NP-hard. Nevertheless, we can find irrRAFs

in polynomial time, and we can describe computable lower bounds on the

size of irrRAFs and also determine if a given (small) collection comprises all

the irrRAFs.

It is also of interest to consider the size and distribution of RAFs in simple

settings such at the binary polymer model, where simulations suggest that

when RAFs first appear, small irrRAFs are unlikely, a result that has been

verified formally in Theorem 4. However, as the level of catalysis increases,

one is guaranteed to eventually find small irrRAFs.

An interesting problem for future work would be to develop better bounds

and approximations for the minimal size of a RAF within a catalytic reaction

system. For example, is it possible to obtain a bound for the size of the

smallest RAF that is within some constant factor of optimal? It would also

be of interest to investigate an extension of RAFs that allow some molecules

to not only catalyse some reactions, but also to inhibit other reactions; in this

case determining whether an analogue of an RAF exists within an arbitrary
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CRS has been shown to be NP-hard (Mossel and Steel, 2005), but in certain

cases the RAF algorithm can be adapted to solve this problem (Hordijk and

Steel, 2012a). In future work, we also plan to explore the stochastic features

of RAF emergence in the presence of inhibition, both for the binary polymer

model, and for more general biologically-motivated networks.
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10. Appendix

10.1. Proof of Proposition 5.1

To establish (ii)⇒ (i), suppose that s(R−R′) 6= ∅ and thatR′∪s(R−R′)

is an RAF for (Q, F ). s(R−R′) is an RAF for (Q′, F ), where Q′ = {X,R−

R′, C − C ′} with C ′ := {(x, r)|(x, r) ∈ C, r ∈ R′}, and so is certainly an

RAF for (Q, F ). Furthermore R′∩s(R−R′) = ∅, since s(R−R′) ⊆ R−R′.

Hence R′ is a co-RAF for (Q, F ).

To establish (i) ⇒ (ii) suppose that R′ is a co-RAF for (Q, F ). Then

there exists an RAF R1 for (Q, F ), such that R′ ∩R1 = ∅ and R′ ∪R1 is an

RAF for (Q, F ). Consider s(R − R′). Since R1 is an RAF for (Q, F ) and

is a subset of s(R−R′), we must have s(R−R′) 6= ∅. It remains to show

that R′ ∪ s(R−R′) is an RAF for (Q, F ). Suppose that r ∈ R′ ∪ s(R−R′).

Then either r ∈ R′, in which case all the reactants of r and at least one

catalyst are contained in clR′∪R1(F ) (since R′ ∪ R1 is an RAF for (Q, F )),
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while if r ∈ s(R − R′) then all the reactants of r and at least one catalyst

is contained in cls(R−R′)(F ) (since s(R − R′) is an RAF for (Q, F )). Now,

R′∪R1 and s(R−R′) are both subsets of R′∪s(R−R′), and so clR′∪R1(F )

and cls(R−R′)(F ) are both subsets of clR′∪s(R−R′)(F ). Consequently, every

reaction in R′ ∪ s(R−R′) has all its reactants and at least one catalyst in

clR′∪s(R−R′)(F ), which implies that R′ ∪ s(R−R′) is an RAF for (Q, F ).

To establish (iii) ⇒ (i), note that RA is an RAF for (Q, F ) such that

R′ ∩RA = ∅ and R′ ∪RA = RB which is an RAF for (Q, F ). Therefore, R′

is a co-RAF for (Q, F ).

To establish (i) ⇒ (iii), suppose that R′ is a co-RAF for (Q, F ). Then

there exists an RAF R1 for (Q, F ), such that R′ ∩R1 = ∅ and R′ ∪R1 is an

RAF for (Q, F ). Trivially, R′ = (R′ ∪ R1)−R1 and clearly R1 ⊂ R′ ∪ R1,

since R′ is non-empty by the definition of a co-RAF, so take RA = R1 and

RB = R′ ∪R1.

To establish (i) ⇒ (iv), suppose that R′ is a co-RAF for (Q, F ). Then

there exists an RAF R1 for (Q, F ) such that R1 ∩ R′ = ∅ and R1 ∪ R′

is an RAF for (Q, F ). It suffices to show that R′ is an RAF for (Q, F ′),

where F ′ = F ∪ π(R1). First we prove that R′ is generated from F ′: i.e.

ρ(R′) ⊆ clR′(F
′). Let m = |R1|, n = |R′|. R1 ∪ R′ is F -generated, so there

exists an ordering Ou = u1, . . . , um+n of its reactions ui satisfying part (iv)

of Lemma 3.1 for the food set F . We herein refer to an ordering satisfying

part (iv) of Lemma 3.1 for some food set F as a proper ordering relative

to F. R1 is F -generated so there exists a proper ordering relative to F ,
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O1 = r1, . . . , rm, of its reactions ri. Define O′ = r′1, . . . , r
′
n to be the ordering

of the reactions of R′ obtained by deleting from Ou every reaction that also

appears in O1, preserving the order of the remaining reactions. We claim that

the concatenation O1, O
′, a reordering of Ou, is a proper ordering relative to

F . Consider any reaction r′ ∈ R′ and a reactant x ∈ ρ(r′). R1 ∪ R′ is

F -generated and R′ ⊂ R1 ∪ R′, so by part (ii) of Lemma 3.1 at least one

of the following holds: (i) x ∈ F , (ii) x ∈ π(r) for some r ∈ R1, or (iii)

x ∈ π(r′′) for some r′′ ∈ R′. If (i) alone is true, r′ trivially does not prevent

the reordering from being a proper ordering relative to F . If (ii) alone is

true, every r ∈ R1 precedes r′ in O1, O
′, so r′ certainly does not prevent

the reordering from being a proper ordering relative to F . If (iii) alone is

true, r′′ must precede r′ in Ou and the order of the reactions of R′ in Ou is

preserved in O1, O
′, so r′′ precedes r′ in O1, O

′. If more than one of (i)-(iii) are

true, then since Ou is a proper ordering, at least one of the conclusions will

hold, which is sufficient. Therefore our claim that O1, O
′ is a proper ordering

relative to F is justified. It follows that ρ(r′1) ⊆ F ∪ π(R1), and for each

i ∈ {2, . . . , n}, ρ(r′i) ⊆ F ∪ π(R1) ∪ π({r′1, . . . , r′i−1}), so moreover O′ alone

is a proper ordering relative to F ′. Then, by the implication (iv) ⇒ (i) in

Lemma 3.1, R′ is generated from F ′. It remains to show that R′ is reflexively

autocatalytic. Since R′ and R1 ∪R′ are F -generated, we can apply part (ii)

of Lemma 3.1 to clR′(F
′) and clR1∪R′(F ) to deduce that they are equal.

Now, since R1∪R′ is reflexively autocatalytic then certainly R′ is reflexively

autocatalytic (by definition).

44



To establish (iv) ⇒ (i), it suffices to show that R1 ∪ R′ is an RAF for

(Q, F ), since we already have that R1 is an RAF for (Q, F ) and R1∩R′ = ∅.

First we prove thatR1∪R′ is F -generated. R1 is F -generated, so there exists

a proper ordering relative to F of its reactions r1, . . . , rm. Similarly for R′

there exists a proper ordering relative to F ∪π(R1) of its reactions r′1, . . . , r
′
n.

Hence the concatenation r1, . . . , rm, r
′
1, . . . , r

′
n is a proper ordering relative to

F of the reactions in R1 ∪R′, so R1 ∪R′ is F -generated. It remains to show

that R1 ∪R′ is reflexively autocatalytic. Since R1,R′ and R1 ∪R′ are each

F -generated, we can apply part (ii) of Lemma 3.1 to each of clR1(F ), clR′(F
′)

and clR1∪R′(F ) to deduce that clR1(F ) ⊆ clR′(F
′) = clR1∪R′(F ). Now since

R1 and R′ are reflexively autocatalytic then certainly R1 ∪ R′ is reflexively

autocatalytic. This completes the proof.

10.2. Proof of Theorem 3

Proof: MIN-RAF is clearly in the complexity class NP, since one can

verify in polynomial time if a given subset of R has size, at most, k and

forms an RAF. We will reduce the graph theory problem VERTEX COVER

to MIN-RAF. Recall that for a graph G = (V,E), a vertex cover of G is a

subset V ′ of V with the property that each edge of G is incident with at least

one vertex in V ′; VERTEX COVER has as its instance a graph G = (V,E)

and an integer K and we ask whether or not G has a vertex cover of size,

at most, K. This is a well-known NP-complete problem Garey and Johnson

(1979) (indeed, one of Karp’s original 21 NP-complete problems). Given an

instance (G = (V,E), K) of VERTEX COVER, we show how to construct
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an instance (XG,RG, CG, FG, k), of MIN-RAF for which the answers to the

two decision problems are identical.

We first construct FG and XG. For each v ∈ V , let av, bv be two distinct

elements of FG and let xv be an element of XG−FG. Order E as e1, . . . , e|E|

and for each j = 1, . . . , |E|, let dj be a distinct element of F and yj an

element of XG − FG. Let d0 be another distinct element of FG. Thus FG

consists of the 2|V |+ |E|+ 1 elements:

FG := {dj : 0 ≤ j ≤ |E|} ∪ {av, bv : v ∈ V }

and XG − FG consists of |V |+ |E| elements:

XG − FG := {xv : v ∈ V } ∪ {yj : 1 ≤ j ≤ |E|}.

For each v ∈ V , define a reaction:

rv : av + bv → xv.

For each 1 < j ≤ |E|, define the reaction:

r′j : yj−1 + dj → yj,

and for j = 1, let:

r′1 : d0 + d1 → y1.

For any subset U of V let:

RU = {rv : v ∈ U}, and let
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Figure 6: (i) A graph G and (ii) the associated CRS QG, consisting of 8 reactions that
form an RAF, and with the super-catalyst (y4) at the top. The two smallest sub-RAFs
of this system are formed by adding either ra and rc or rb and rc to the four reactions
r′1, . . . , r

′
4, and these two choice correspond to the two smallest vertex covers of G, namely

{a, c} and {b, c}.

RV := {rv : v ∈ V } and RE := {r′j : 1 ≤ j ≤ |E|},

and set

RG = RV ∪RE.

Thus, we have specified XG, FG and RG and it remains to define the

catalysis (CG) assignment, which is as follows:

• If ej = (uj, vj) (where uj, vj ∈ V ) then r′j is catalysed by both xuj and

xvj (but by no other molecules).
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• In addition, each reaction rv : v ∈ V is catalysed by y|E| and by no

other molecule - we call the molecule y|E| the super-catalyst.

An example of this construction is illustrated in Fig. 6. We have now

fully specified the catalysation and thereby the pair (QG, FG) constructed

from G (QG = (XG,RG, CG)).

Claims:

• RG is an RAF for (QG, FG).

• A subset R′ of RG is an RAF for (QG, FG) if and only if R′ = RV ′∪RE

for a vertex cover V ′ of G.

• The vertex covers of G of size K are in one-to-one correspondence with

the sub-RAFs of RG of size K + |E|.

The first claim is readily verified.

To establish the second claim, suppose that V ′ is a vertex cover of G.

Then every reaction in RE is catalysed by the product of least one reac-

tion in RV ′ . Moreover, the product of r′|E| catalyses all the remaining reac-

tions. Thus, R′ is reflexively autocatalytic, and it is also clear that R′ is

F -generated; thus R′ is an RAF and it has K + |E| reactions. Conversely,

suppose that R′′ is an RAF for (QG, FG) of size at most K + |E|. If r′E is

not in R′′ then the super-catalyst is not produced by any reaction in R′′ so

none of the reactions in RV is catalysed; moreover, because the products

from these last reactions provide the only catalysts for RE it follows that
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R′′ = ∅. Thus, since R′′ is non-empty (being an RAF), r′|E| must be an

element of R′′, and in order to construct the reactants of r|E|, all the reac-

tions RE must form a subset of R′′. In order for all these reactions to be

catalysed, at least one of the reactions ruj and rvj must lie in R′′ for each

1 ≤ j ≤ |E|. Thus {v : rv ∈ R′′} is a vertex cover of G and it has size,

at most, (K + |E|) − |E| = K as claimed. This establishes the required

reduction, and thereby completes the proof of the second claim.

The third claim follows by the noting that the association V ′ 7→ RV ′∪RE

maps vertex covers of G of size K onto sub-RAFs of RG of size K + |E| (by

the previous claim) and two different vertex covers are mapped to distinct

sub-RAFs. This completes the proof.

Part (i) of Theorem 3 now follows from the first two claims, while Part

(ii) of Theorem 3 follows from the third claim, combined with the #P-

completeness of counting vertex covers of a graph and minimum vertex covers

of a graph (see Vadhan (2001)).

Remark: We have ensured in the proof above that each reaction has just

two reactants, in line with the binary polymer model. However, the attentive

reader will notice that F may have to be quite large. Nevertheless, it is quite

straightforward to modify this example so that F is kept small (e.g. of size

6), and to implement the construction within the constraints of the binary

polymer cleavage–ligation model.

49


