
Material Representations: From the Genetic
Code to the Evolution of Cellular Automata

LUIS MATEUS ROCHA† AND WIM HORDIJK‡

†Modeling, Algorithms, and Informatics Group
Los Alamos National Laboratory, MS B256

Los Alamos, NM 87545, USA
e-mail: rocha@lanl.gov

URL: http://www.c3.lanl.gov/~rocha 

‡Santa Fe Institute
1399 Hyde Park Road

Santa Fe, NM 86501, USA
e-mail: wim@santafe.edu

URL: http://www.santafe.edu/~wim/ 

Artificial Life. In Press. Los Alamos National Laboratory Internal Report Number: LAUR 04-0051

ABSTRACT

We present a definition of the concept of representation that relies on a study of the origin of the types of
structures that are used to store memory in evolving systems.  This study is based on what we know about
genetic memory in Biology, and from our own novel experiments in the evolution of Cellular Automata to
solve nontrivial tasks. Our key observation is that representations need to be inert structures that encode
information used to construct appropriate dynamic configurations. Unlike what is commonly understood in
Cognitive Science, we argue that evidence from Biology shows that representations are not stand-ins in
dynamic processes, and also do not need to refer to situations external to a given organism or dynamics. We
propose criteria to decide if a given structure is a representation by unpacking the idea of inert structures that
can be used as memory for arbitrary dynamic configurations.

Using a genetic algorithm, we evolved Cellular Automata rules that can solve non-trivial tasks related to the
density task (or majority classification problem) commonly used in the literature. We present the particle
catalogs of the new rules following the computational  mechanics framework. We discuss if the evolved
cellular automata  particles may be seen as representations according to our criteria. We show that while they
capture some of the essential characteristics of representations, they lack an essential one. 

Our goal is to show that Artificial Life can be used to shed new light on the existing computation versus
dynamics debate in Cognitive Science, and indeed function as a constructive bridge between the two camps.
Our definition of representation and Cellular Automata model are proposed as a complementary approach,
with both dynamics and informational modes of explanation.

Keywords: Representation, Cellular Automata, Evolutionary Computation, Artificial Life, Cognitive
Science, Symbols, Genetic Code, Memory.



1 Other terms may be used to convey the computation and dynamics camps. The first is often also identified
with terms such as symbolic, representationalist, information processing, etc. The dynamics camp is also known as
emergent, connectionist, self-organization, embodied, etc. 

2

1. BACKGROUND

The notion of internal representation in cognitive systems and its role in intelligent behavior has been
undergoing serious reformulation in cognitive science, ranging from rejection   [Freeman and Skarda, 1990]
[Van Gelder and Port, 1995; Varela et al, 1991] to externalization or leakage into the environment [Clark,
1996]. Ultimately, however, such reformulation must address the familiar computation versus dynamics
debate1. Typically, researchers in Cognitive Science deal with this debate by choosing the side of one of these
paradigms and  pursuing its own research questions without getting any nearer to the central problem of this
field: the matter-mind problem.

“Adequate explanation in cognitive science must at some stage address the matter-mind problem, that is, the
problem of how symbol reference or how the world and our images of the world are coordinated. However,
this problem has proved so difficult over the centuries, that not only is there no apparent convergence toward
some solution, but there is no consensus on what is required of any solution. So cognitive scientists have a
secondary problem of choosing what types of investigation they can do if they can’t attack the matter-mind
problem directly.” ([Pattee, 1982] p. 325-326)

Indeed, the success of the paradigms on either side of the feud is that they manage to avoid the problem
entirely. On the extreme computationalist camp, there is the assumption that the essential nature of mind is
implementation independent – the computationalist approach to Artificial Life regards the concept of life in
precisely the same manner. Mind (or life) is a computational process that can be instantiated in different
material embodiments, therefore the research program is directed at describing the higher-level elements and
constraints responsible for intelligent (or living) behavior. 

In Cognitive Science, these elements are internal representations standing for events and characteristics of
the external environment, which can be manipulated independently from, and in lieu of, the actual aspects
of the environment they represent. Such representations are also thought of as symbols. The research program
of this camp is devoted to the study of the rules that can be used to manipulate symbols in order to obtain
intelligent behavior, but not usually to the study of how representations come to represent the environment
to begin with, or how symbols come to have meaning (symbol-grounding [Harnad 1990]), or in the end, how
matter becomes mind.

At the root of the computationalist approach to Artificial Life there is the concept of a generalized
Genotype/Phenotype mapping [Langton, 1989] which regards life as an essentially representational process
in which genes (symbols) represent phenotypical attributes. Again, the research program of this approach to
Artificial Life is devoted to implementing and studying rules to manipulate generalized Genotype/Phenotype
mappings, but not at the origin of such mappings to begin with [Pattee, 1995a] [Thompson, 1997].

Similarly, on the extreme dynamics camp, mind (and life) is a dynamical process that cannot be separated
from the environment and emerges from the nonlinear interaction of many material components. This camp
rejects information processing constructs such as representations and symbols, opting instead for a dynamical
systems explanatory framework (e.g. [Beer, 1995]). In other words, this camp opts for an account of mind
(and life) exclusively as a material process following, and fully describable by, the laws of the dynamics of



3

matter. This way, there is never a need to explain the symbols, and ultimately mind (and life), out of matter
problem, since all that there is to describe is the global dynamics of many material components following
physical law. In the Artificial Life context, this camp prefers to regard genes and genotypes as just another
set of material components of the dynamics of life. Therefore, the genotype/phenotype mapping is regarded
as an artificial construct of the modelers of living systems prone to information-centric modes of explanation.

Clearly, both of these camps are very attractive since each one chooses only one side of the matter-symbol
problem, while avoiding the essential question of the origin of symbols from matter in cognitive science
and/or artificial life. One can argue that it is plausible that this essential question is ill-posed and inherently
dualist (e.g. [Thelen et al, 2000]). But we ultimately communicate (among other modalities) with discrete
symbols which  trigger dynamic processes in our brains. Moreover, our current understanding of Biology
shows that processes of a symbolic nature are essential to Evolution (as we discuss below). Given what we
know about Biology,  there is certainly a  need to explain the interface between symbols and dynamics in
Artificial Life which is neglected by theories entertained solely in either one of these camps. We argue here
that the study of this interface in Artificial Life, namely with systems such as the cellular automata
simulations in section 7, can help us gain a better understanding of the concept of representation in Cognitive
Science.

Both the computationalist and dynamics camps reduce the matter-symbol problem to a single dimension:
cognition and life are nothing but representations or genotype/phenotype mappings, respectively,  instantiated
in mostly irrelevant material embodiments (computationalism), or alternatively, cognition, life,
representations and symbols are nothing but the complex attractor behavior of dynamical systems. Those who
exclusively pursue either of the two extreme camps, often fear that the alternative would necessarily be some
veiled dualism, but Pattee has proposed an alternative view based on complementary modes of description:

“The problem and the attraction of physics and computation as bases for models is that they are both
universal, but complementary, modes of description.[...] The issue is whether the description of matter-
symbol systems by either mode alone is a satisfactory explanation. The cases at point: Do descriptions of
symbol vehicles taken only as matter following laws of motion, have explanatory value; or do descriptions
of coordinated dynamics taken only as programs, have explanatory value?” ([Pattee ,1982], pp-328-329).

The crux of the complementary view is acknowledging that while symbols must have a material embodiment
following laws of dynamics, this is not the same as saying that symbols are “nothing but” matter. As we will
discuss in detail, symbolic behavior is an evolutionary property. As such, symbol function is not a  property
of the dynamics of material symbol vehicles themselves, but rather arising from arbitrary associations
between inert material components (such as DNA) and dynamic regularities (such as those arising from
protein interactions). Because the function of material symbols is to carry information and not to act in
dynamic processes directly, we require a complementary description of the material components of life. The
dynamics of DNA is largely irrelevant to understand the living organization. It is rather the information DNA
stores to produce RNA and proteins that is relevant. On the other hand, the dynamics of proteins (and even
RNA) as catalysts and active bio-chemical players is most relevant. We thus need a complementary view of
the living organization that allows for complementary dynamic and information processing modes of
description, thus rejecting reductionism of either kind, as well as any non-materialistic dualism. 

Using the living organization as a guideline, and artificial life as a laboratory, it is our goal to bring  the
complementary approach to the symbol-matter problem to cognitive science. Given the nature of information
in biology, our first observation is that a complementary approach to cognitive science must deal with the
problem of the origin of symbols from dynamics  in an evolutionary setting. Pattee [Pattee ,1982] suggests



4

that cognitive science should tackle such an origin problem by dealing with much simpler matter-symbol
systems than the matter-mind problem:

“We need simpler embodiments of natural matter-symbol systems with both empirical power and conceptual
generality. Why should we work only with the ultimate functional complexity of brains, or the ultimate
artificiality of computers, or the ultimate meanings of philosophical discourse? As a first trial I suggest trying
to adapt our fundamental concepts of cognitive science to the basic symbol-matter problems of biology, and
even physics, where a few rungs have already been secured.” ([Pattee ,1982], page 327)

Others in cognitive science have tried to approach the explanatory shortcomings of the two extreme
paradigms above, by re-working the concepts of symbol and representation into an essentially dynamicist
view of embodied cognition (e.g. [Clark ,1996]). In particular, Wheeler and Clark [Wheeler and Clark, 1999]
have proposed the biologically motivated notion of genic representation to discuss the need to incorporate
information processing elements in complementary models of cognitive behavior. Such models do justice to
the evidence supporting the embodied, dynamic view of cognition while also explaining the symbolic
dimension that clearly exists in biological organisms

From the complex systems perspective, Mitchell[Mitchell, 1998]and Rocha [Rocha, 1998b] [Rocha, 2000]
have espoused a similar approach, while further proposing a set of experiments with Cellular Automata  as
a simpler, yet artificial, matter-symbol system to study the origin of representations and computation. In these
experiments we may observe the emergence of representations from a dynamical substrate. 

Both of these approaches point to the neglected middle ground in cognitive science: the origin and nature of
representations. They call for a more explicit study of the different kinds of representations that can exist in
biological and complex dynamical systems. Indeed, we know that in biological systems a coded, symbolic
form of replication (genetic reproduction) has emerged and evolved out of the dynamics of self-organization
[Wills, 2001] [Bedian, 2001] [Pattee, 2001] It is at least plausible that other dynamical systems, such as
embodied cognitive agents, have undergone a similar evolutionary process of origin of symbols, and make
use of those symbols for their functioning – besides reproduction.

To build empirical knowledge from simpler symbol-matter systems, as Pattee suggests,  we need to agree on
a set of concepts to contrast several such systems with one another. Artificial life, poised somewhere between
theoretical biology and complex systems theory, offers an ideal setting to approach the problem of the origin
of symbols from dynamical systems. It allow us to define simpler, artificial  matter-symbol systems which
we can study computationally in evolutionary experiments, or even possibly with evolutionary robotics. In
this sense, artificial life may be used to approach the toughest cognitive science problems with more easily
decidable and comparable experiments. In the following, we explore what we should expect natural
representations (and their simulations) to be in embodied agents, thus offering  criteria to reformulate the
concept of representation in cognitive science. We also demonstrate how simulations can be used to study
the process of the origin of representations. To this end, we supplement the Cellular Automata experiments,
proposed by Mitchell as models of representations, with tougher tasks, resulting in the emergence of
representations with some of the characteristics described by our reformulation – though lacking an important
one.

It needs to be stressed that this exercise is not an attempt to generalize the concepts of representation or
cognition. We are not interested in claiming that cells or cellular automata are systems with minds.  We also
do not attempt to study the concept of representation per se, but rather the process of origin of representations,
symbols, computation, and the like. We are aware that much important work has been done in Cognitive
Science and Evolutionary Systems Theory to define the concept of representation in  a Biological and



5

Evolutionary setting (e.g. [Garrett Millikan, 1984], [Emmeche and Hoffmeyer, 1991], [Dretske, 1995],
[Wheeler and Clark ,1999], [Bickhard, 2002], [Jackendoff, 2003]), some of which is quite convergent with
our view of representation, but the work here presented is directed specifically at the study of the origin of
representations from a dynamical milieu using the methodology of Artificial Life and knowledge of Biology.
Thus, a comprehensive discussion of the concept of representation is beyond the scope of the present work.
 Rather, we work with Haugeland’s [Haugeland, 1991] definition of representation, which captures the
essence of the concept in Cognitive Science, using it in contrast to the types of representations that arise in
evolving dynamical systems – the origin process we are interested in. The inspiration for this artificial life,
bottom-up approach to studying representations, is drawn once again from Howard Pattee:

“In traditional philosophy epistemic cuts are viewed as problems only at the cognitive level. They are called
problems of reference or how symbols come to ‘stand for’ or to ‘be about’ material structures and events
[Cassirer, 1957] [Harnad,1990] [Whitehead, 1927]. I have always found the complementary problem much
more fundamental: How do material structures ever come to be symbolic? I think that if we fully understood
how molecules become messages in cells we would have some understanding of how messages have
meaning.”([Pattee ,1995a], pages 25-26)

2. PHYSICAL SYMBOL PROCESSING

Since we are interested in simple matter-symbol systems, let us start our discussion with what we know about
the physics of representations or symbols. The physical symbol system hypothesis put forward by Newell &
Simon [Newell & Simon, 1976] states that any physical symbol system (of sufficient size) will have the
ability to exhibit intelligent behavior, and, furthermore, that any system that exhibits intelligent behavior
necessarily has to be a physical symbol system.

“A physical symbol system consists of a set of entities, called symbols,  which are physical patterns that
occur as components of another type  of entity called an expression (or symbol structure). Thus, a symbol 
structure is composed of a number of instances (or tokens) of symbols  related in some physical way (such as
one token being next to another).  At any instant of time the system will contain a collection of these  symbol
structures. Besides these structures, the system also contains  a collection of processes that operate on
expressions to produce other expressions: processes of creation, modification, reproduction and  destruction.
A physical symbol system is a machine that produces through  time an evolving collection of symbol
structures.” [Newell & Simon,1976] 

Given this definition, the physical symbol system hypothesis is simply stated as: “A physical symbol system
has the necessary and sufficient means for general intelligent action.” [Ibid]. Many attempts at modeling
intelligence or cognition are based on this hypothesis, i.e., that the underlying system that exhibits intelligent
behavior is some form of a physical symbol system. The symbol processing schemes derived from the
research program that ensued this hypothesis have proved very useful for building artificial intelligence
applications. But, what this definition of physical symbol systems describes are the mechanisms that can be
used to manipulate and process physical structures taken as representations or symbols. It adds nothing to the
problem of the origin of symbols nor to the empirical constraints of actual matter-symbol systems. 

In fact, regarding this origin problem, the hypothesis merely states the obvious: every symbol system, as any
other thing, must follow physical law. It does not specify the conditions in which matter may become
symbolic, the constraints that matter and symbol may impose and require from one another, nor the conditions
in which an information processing model is necessary or preferable over a physical one. Indeed, it does not
even clearly distinguish matter from symbol. 



6

Here we study simpler matter-symbol systems in the hopes of answering some of these questions, namely:

1. Which material structures can instantiate representations and symbols?
2. In which conditions can we say that matter becomes symbolic?
3. When is it preferable to use complementary (dynamics/symbolic) modes of description?

3. IS DYNAMICAL SYSTEMS THEORY ENOUGH?

3.1 From Self-Organization to Embodied Cognition

The dynamics approach to cognitive science is rooted in the notion of self-organizing systems. Self-
organization is seen as the process by which energetically open systems of many components tend to reach
a particular state, a set of cycling states, or a small volume of their state space (attractor basins), with no
external interference. This attractor behavior is often recognized at a different level of observation as the
spontaneous formation of well organized structures, patterns, or behaviors, from random initial conditions
(emergent behavior). 

Self-organization is often studied computationally with discrete dynamical systems (state-determined
systems) such as boolean networks or cellular automata. The state-determined transition rules are interpreted
as the laws of some physical system [Langton, 1986] [Rocha and Joslyn, 1998]: the state of each component
depends on the states of its neighbor (or related) components in the previous time instance. It follows from
the observed attractor behavior [Wuensche and Lesser, 1992] that there is a propensity for matter, whose
physical law is modeled by the transition rules of Dynamical Systems Theory (DST), to self-organize
(e.g.[Kauffman, 1993]). In this sense, matter is described by the (lower-level) dynamics of state-transitions
and the observed (emergent) attractor behavior of self-organization.

The attractor basins of dynamical systems can be used to refer to observables accessible to the self-organizing
system in its environment, and thus perform environmental classifications (e.g. classifying neural
networks).These self-organizing systems do this by producing dynamic stabilities in interaction with their
environments, routing situations from this interaction into a small set of attractor basins which produce a
corresponding small set of behaviors. In this sense we say that the self-organizing system classifies its
environment into such a small subset of behaviors. This process of obtaining classifications of an environment
by a self-organizing system, has been referred to generally as emergent classification. Emergent because it
is the global result of the local, state-determined, interaction of the basic components of the self-organizing
system with its environment. A more detailed discussion of this emergent classification, also known as eigen-
behavior, was pursued in [Rocha, 1996].

The dynamics or self-organizing approach to cognitive science is rooted in the use of connectionist systems
capable of emergent classification, such as neural networks. These systems originate from designs by
McCulloch and Pitts [McCulloch and Pitts, 1943] meant to model the actual material components of the brain
(rather than the higher-level information processing constructs of the physical symbol systems hypothesis).
Their original cybernetic designs led to the development of neural network models, and more generally to
parallel distributed processing (PDP) or connectionist models (e.g. [McClelland et al, 1986]).

Connectionist systems are defined by networks of highly simplified  neurons. In an artificial neuron there are
a number of input signals carrying the states of other neurons. These inputs are weighted and integrated



2 In continuous dynamical systems this temporal relation is governed by the rates of change of variables
expressed as differential equations. In discrete dynamical systems it is governed by the transition functions of each
component. In the latter case, time is substituted by synchronous computation of these functions.

7

(typically summed) by the receiving neuron. Finally, the result of this integration is fed into a threshold
function that determines the neuron's own output state, which again serves as input to other neurons. A
network of artificial neurons is created by connecting a number of these artificial neurons (feeding the output
of one neuron to the inputs of other neurons). A neural network of this type  is a state-determined system as
defined above.  The local weights and connectivity of a network dictate how it self-organizes into a small set
of global states, or attractors. We can control the attractor states by tweaking the weights and connectivity
with specialized  algorithms. 

By associating the set of stable attractors that these networks can produce with situations in their environment,
we can use the weight adjusting algorithms to route related situations to the same attractor states. In this sense,
we train connectionist systems to classify situations in their environments appropriately. 

The main characteristic of these systems is that they do not rely on explicit representations of their
environments, in fact, they do not possess symbolic structures holding a memory of environmental situations.
Each neuron is a simple state-determined machine producing its next state in strict dynamic fashion, and all
neurons produce their next state in parallel. It is only the network as a whole that can be said to classify the
environment. If the network possesses a representation of its environment, it is distributed in the collection
of weights and connections of the entire network. There are no explicit symbols representing objects or facts
in a certain domain, as the classification function is implemented by the quantitative state of the entire system
[Ramsey et al, 1991]. 

Connectionist architectures turn out to be very successful in solving pattern recognition tasks and often
behave in more biologically plausible ways, e.g. by mirroring the errors of young children in language
acquisition.  Furthermore, they provide a counterexample to the physical symbol system hypothesis, since
they are capable of solving tasks that we generally view as requiring intelligence, but there does not seem to
exist any explicit symbol manipulation governing the classification function in these systems.

Another important characteristic of dynamical systems  is  rate-dependence [Van Gelder, 1998]. One way to
think of this, is to realize that the components of a connectionist network are dynamically coupled to their
environment. In the language of physics, we can say that the network is dynamically coherent with its
environment. Dynamically, the network and the environment are in fact one system, a change of state in one
produces a coordinated, state-determined chain of events in the other – there is a definite temporal relation
between events and components of the network-environment coupling2. Thus, it is very difficult to even
separate a connectionist system from its environment. Indeed, the emergent behavior of agents that are
dynamically coherent with their environments (embodied agents) is as much a result of the production rules
of the agent as of the laws of the environment [Beer ,1995] [Clark ,1996] [Rocha and Joslyn ,1998].

Wheeler and Clark [Wheeler and Clark ,1999] refer to this lack of separation between dynamically coherent
agents and their environments as causal spread. When studying dynamically coherent agent-environment
couplings, or embodied cognition, it becomes indeed hard to argue against the radical dynamicist’s claim that
cognition is best studied with nonrepresentational explanatory devices, except on the grounds that using
representational explanations is intuitively more appropriate for us human beings. Are we indeed better off
abandoning the notions of representations and symbols altogether and adopting a purely dynamical view of
the world, in which cognitive agents are networks of components indistinguishable from their environment?



8

3.2 The Problem of Biological Function

The answer to the previous question depends on whether there are limitations to the current dynamical
systems framework[Mitchell ,1998]. More specifically, whether the reduction of matter-symbol systems to
pure dynamical systems requiring nothing but a material or physical mode of description, turns out to be
insufficient to explain natural phenomena. Clark [Clark ,1996] and Mitchell[Mitchell ,1998]point first to the
scaling issue. It is not clear how the current dynamical systems models of evolutionary robots, neural
networks and the like, which possess relatively small number of components, will scale to systems with many
more components. Clark also gives powerful arguments against the ability of current dynamic models of
simple cognitive abilities to explain more “representation-hungry” problems.

DST is used to explain natural phenomena by describing the properties of matter that are, by principles of
invariance and symmetry, as independent of observers and individual measurements as possible. These are
by definition the universal physical laws of matter [Pattee, 1995b]. Therefore, dynamical systems equations
describe only those aspects of matter that have no context-specific significance for individuals. DST is not
equipped to deal with concepts such as biological function, adaptation, and selection. A dynamical systems
model needs other tools to explain how a bird’s wing functions both as an airfoil and an engine at the same
time [Rosen, 1993], though it can clearly explain the possible dynamic configurations of the components of
the wing. This kind of model also does not allow us to “understand how two adaptive systems with very
different dynamical portraits give rise to similar functional behavior”[Mitchell ,1998].

The problem is that biological function is a selective property of populations of individuals evolving under
natural selection. Natural selection can be described as a statistical bias on the rates of reproduction of
populations of individuals. But this is as far as (statistical) dynamics theory can take us to describe this
process. It can describe which components see their reproduction rates increase in population dynamics
trajectories, but it cannot describe the individual adaptive strategies responsible for the increase. It cannot
describe how a certain phenotypical characteristic of an organism gives it an advantage in a particular
environment. To construct a model of this type of context-specific constraint on the biological organization,
the modeled agents require control of initial and boundary conditions, in addition to dynamical equations or
state-transitions.

What distinguishes biology from physics is that biological organisms, subjected to natural selection, gained
some control of constraints to their own dynamics. Obviously, living organisms obey the dynamics of
physical law, but unlike non-living systems that can be described solely by these equations, biological
organisms store in genetic memory  initial and boundary conditions to produce and re-produce their own
dynamics. Below we elaborate further on the fact that genetic memory is dynamically decoupled from the
bio-chemical dynamics of life, and that the information it stores is used to set up, and thus control, context-
specific dynamics. A deeper discussion of this issue has been pursued by Pattee [Pattee ,1982] [Pattee ,1995b]
[Pattee ,2001] and further elaborated by Rocha [Rocha, 2001].

4.GENETIC MEMORY

How genetic information can arise from a purely dynamic bio-chemical system is still very much a hard
question – the origin f life problem. Interesting models of the origin of the genetic code have been proposed
(e.g.  [Bedian, 1982] [Bedian ,2001] or more recently  [Nieselt-Struwe and Wills, 1997] [Wills ,2001]). In



9

any case, the genotype-phenotype distinction in living systems is an observed symbol-matter system, the
characteristics of  which we discuss in this section.

4.1 Evolving Systems Require Selectable Initial Conditions

To evolve in a changing environment, dynamical systems must be able to change their own dynamics in order
to produce new basins of attraction responsible for new classifications and behaviors. For natural selection
to operate, an evolving dynamical system must have access to distinct configurations — there must be
different alternatives to be inherited and subjected to variation [Rocha ,1996] [Rocha, 1998a] [Rocha ,2001].
How can a dynamical system store and access different configurations?

Notice that dynamical systems do not truly allow for alternatives. “The only meaning we can attach to a
choice of alternatives in a system described by deterministic laws is through measurement and control on
initial conditions”. ([Pattee ,1995b], page 15). The attractor landscape of a given dynamical system, while
providing several possible outcomes for the system’s dynamics, does not truly yield alternatives until there
is control of the initial conditions that set the dynamical system into an attractor or another.  Therefore, we
need some kind of memory that can store the alternative initial conditions that allow evolving dynamic
systems to produce different, inheritable configurations and behaviors. These memories re-enter the dynamics
only when selected as initial condition constraints. Since we necessitate alternatives to describe the selective
process of evolving systems, our explanatory language must include both the dynamics of matter and the
memory components that can store selectable initial conditions. 

We could of course conceive of another dynamical system, with a different time-scale, whose states could
set the alternative initial conditions for the first dynamical system.  But then, if the entire system were to
evolve, we would need yet another dynamical system to store the initial conditions of the previous one, and
so forth in an infinite regress as Von Neumann [Von Neumann, 1966] discussed in his self-reproducing
scheme [Rocha ,1998a]. Therefore, we are better off treating the components that store initial conditions for
a given evolving dynamical system as memory. Clearly, significantly distinct time-scales play a role in what
is considered a dynamic component or static memory for a given evolving dynamical system. Below we
elaborate on what kind of inert components can serve as memory for an evolving dynamical system.

What needs to be stressed here is that evolutionary systems require both dynamic and memory components
for selection. It is not sufficient to consider exclusively state-determined, rule-following, dynamics – which
would amount to agents with no selectable alternatives. We need components that can store initial conditions.
This complementary view of evolutionary systems leads us to think of what kinds of selection processes are
possible given different types of memory used to store initial conditions, a question that was explored in
[Rocha ,2001]. Here we deal with the characteristics of known biological memory components and simpler
artificial constructs.  Let us first investigate the characteristics of genetic memory components in biological
organisms.

4.2 Dynamical Incoherence in the Genetic System

In biology, organisms employ “inert” structures to store initial conditions used to construct appropriate
dynamical (bio-chemically active) components as well as reproduce other organisms such as themselves. But
what kind of material structures can be conceived of as “inert”, and used as memory of initial condtions for
producing and reproducing dynamic agents? These must be material components with many dynamically
equivalent states which can be used to set up an arbitrary (representational) relation with another set of
material components that instantiate the dynamic system. The  genetic system gives us this insight. 



10

The genotype (set of nucleotide sequences in DNA) of biological organisms is the memory that encodes
initial conditions (amino-acid chains) used to produce components (proteins) which ultimately self-organize
into some dynamical configuration (phenotype). Fundamentally important is that most any sequence of
nucleotides is equally possible, which means that DNA molecules provide many dynamically equivalent
states. Furthermore,  the informational value of a DNA sequence (genetic information) is independent of the
particular dynamic (bio-chemical) behavior of the DNA molecule that contains the sequence. Genetic
information is not expressed by the bio-chemistry of nucleotide sequences in DNA molecules, but is instead
mediated through a code that translates nucleotide sequences into amino-acid sequences. Unlike DNA, amino-
acid sequences do possess a very dynamic bio-chemistry, which defines phenotypes – the ultimate expression
of genetic information in an environment. 

It is precisely the bio-chemical (dynamic)  irrelevance of nucleotide sequences (“inertness”) that makes DNA
molecules  the ideal  memory structure for genetic information given an arbitrary genetic code [Pattee ,1995a]
[Umerez, 1995]. DNA qua carrier of genetic information in biological organisms is virtually dynamically
incoherent with the bio-chemistry of the organism/environment coupling, since the information needed to
construct a given protein (the memory) can be retrieved at any time as much as a book can be retrieved from
a library [Pollack.R., 1994]. 

What does dynamical incoherence mean? Ultimately, all biological components have a bio-chemical,
dynamic, substrate. The point is that in a system where certain components are used as memory, their
dynamics is irrelevant.  It is not their dynamic (bio-chemical) characteristics that elicits responses from the
dynamic components of the system. Rather, it is their informational value, extracted via a code (instantiated
by the Ribosome, T-RNA and other machinery in the cell), which is relevant for producing behavior. Indeed,
recent organisms carry many of the same genes used by primordial organisms to produce the same proteins.
More and more transgenetic technology pervades our life; we can use bacteria to produce human proteins
such as insulin, or produce plague resistant tomatoes with proteins encoded in genes from pigs. Viruses too
are little more than genetic memory that use the dynamic machinery of host cells to reproduce.  All these facts
show that in their role of information carriers, the dynamical substrate of genes (bio-chemistry of  DNA
molecules) is mostly  irrelevant. 

Genes can be decoupled from a particular organism, and introduced into another where they will be used for
their memory function which is: the specification of initial conditions that produce particular cell dynamics,
thus re-entering the dynamics of their host cells. One can argue that we can also introduce a particular protein
into an organism to produce particular cell dynamics. But such an action would not be decoupled from the
host dynamics since it would produce a dynamically coherent reaction. In contrast, the introduction of a gene
into an organism’s genome, via reverse-transcription as in transgenetic technology, allows the organism to
produce the encoded protein on demand. Essentially, once a gene is encoded in a genome it can be accessed
very much like random-access memory [Rocha ,2001], because (as Von Neumann [Von Neumann ,1966]
observed early on), it is decoupled from the bio-chemical machinery of the cell. Without genetic information,
for a protein to exist in an organism it needs to be constantly introduced –  as medication, for instance. With
genetic information, the organism can produce the protein from memory as needed.

Now, of course, being instantiated as molecules, genetic memory cannot be completely dynamically
incoherent. Dynamical incoherence needs to be understood in a frame of stable existence of the whole
dynamic machinery that can decode the memory. Genes can be read by the living cell’s machinery, as long
as the cell exists as such. Very much in the same way as a writing system is useful as long as it is understood
by an appropriate reading framework. Therefore, dynamical incoherence is not an absolute concept, but rather



11

a relative one. For a given dynamics, with particular time scales, we can treat certain components as
incoherent, if their dynamics are irrelevant for those time scales. We can further treat them as memory, if such
dynamically incoherent components are used as information to specify sets of initial conditions for the
original dynamics.

Our understanding of genetic memory naturally depends on the particular evolutionary process of life on
Earth. Other forms of evolutionary processes are possible which may not make use dynamically incoherent
memory. A study of different possible evolutionary processes is detailed in Rocha [Rocha ,2001], where the
advantage of dynamically incoherent memory is discussed. In particular, based on the arguments of Von
Neumann and Pattee, it is defended that open-ended evolution requires dynamically incoherent memory of
initial conditions. For the purpose of this article, it is sufficient to observe that dynamically incoherent
memory  exists in biology, and its explanation requires complementary dynamics and informational models.

4.3 Genetic Memory instantiates a Matter-Symbol System

The notion of genetic memory  needs to be dissociated from that of a computer program. When we say that
the genome encodes the memory to produce the dynamics of a particular phenotype, we are not saying that
the genotype completely specifies (or programs) the phenotype.  Clearly, genes do not encode the complete
specification of proteins and the means to produce them. That is, genes do not encode information such as
how to fold a protein. All of this comes for free with the laws of dynamic matter [Moreno et al, 1994]. In
other words, they are not programs that completely specify some dynamics. The initial conditions that genetic
representations encode, merely start off the dynamics of a set of components, they do not encode the
dynamics itself. Moreover, the specification of initial conditions (e.g. aminoacid sequences) is only the first
step in the development of a given dynamics (e.g. a phenotype). The final dynamical outcome can also be
modulated by the environment in many different ways [Huang and Rocha, 2003; Rocha, 1995]. For instance,
the gender of some crocodiles depends on the temperature in the nest [Goodwin, 1994], rather than being
genetically controled.

Genetic memory is part of a matter-symbol system, which is a different concept from the abstract symbols
of the physical symbol system hypothesis. A matter-symbol system entails a construction code such as the
genetic code.  In turn, such a code  presupposes a mapping between two sets of material components: a small,
finite, number of symbols (e.g. codons in DNA), and a finite number of building blocks (e.g. aminoacids).
The symbol set needs to be instantiated by inert material structures with many dynamically equivalent states,
as described above (e.g. DNA molecules). The building blocks, on the other hand, need to produce very
dynamical (reactive) products (e.g. proteins). The code itself needs to be instantiated by machinery capable
of producing the dynamic products from the memory stored in the material symbols (e.g. the Ribosome and
tRNA moelcules).

It is important to stress that a particular mater-symbol system is tied to specific building blocks. The richer
these are, the smaller the required descriptions, but also the smaller the number of constructable products.
Conrad [Conrad, 1993] referred to this as a tradeoff between programmability and high evolutionary plasticity
or efficient use of computational resources. Genetic memory does not need to describe all the dynamical
characteristics of a given protein (full programmability), it merely needs to specify an aminoacid chain which
will itself self-organize (fold) into the protein with a given bio-chemistry.

The cost of this efficient ability to specify proteins, is that the genetic code is not a universal symbol system
in that it cannot specify anything whatsoever, but only those things that can be constructed from aminoacid
chains. Genetic memory can store any conceivable amino-acid chain built from the twenty aminoacids used



12

by the genetic code [Eigen, 1992], but nothing else. Therefore, we should think of genetic memory not as a
program capable of universal specification, but rather as a material symbol system used to construct building-
block-specific dynamic configurations, that is, encoded initial conditions for specific dynamic systems. 

5.MATERIAL REPRESENTATIONS

In cognitive science, representations are typically thought of as structures capable of participating in processes
in lieu of actual components that they stand for: When features that are necessary are not present, they may
“be represented; that is, something else can stand in for them, with the power to guide behavior in their stead.
That which stands in for something else in this way is a representation; that which it stands in for is its
content; and its standing in for that content is representing it.” ([Haugeland ,1991], page 62) Haugeland
further requires that only those “stand-ins” which participate in a representational scheme are representations.
Such a scheme requires that there exist several possible representations and contents; that there is a
systematic, consistent code to determine the content of representations; and that there is a systematic syntax
for producing, maintaining, and modifying representations.

5.1 The Active and Passive roles of Material Representations

Our view of material representations as observed in the genetic system shares some of the characteristics of
representations as defined by Haugeland, but shows a very important distinction which becomes apparent
when we discuss the active and passive roles of representations. Genetic memory is never used in a dynamical
process in lieu of something else. It is simply used, when decoded, for construction of amino acid sequences.
Simply put, genes never stand in for proteins in the bio-chemistry of life.  The relation between genes and
proteins is rather a reading and construction process – referred to in biology as transcription and translation
processes, respectively. Indeed, the necessity of conceiving the genotype as symbolic memory rather than
dynamic matter lies in its particular role as the repository of initial conditions for, and not as a dynamic player
in, the bio-chemistry of life (section 4). If genetic memory were a dynamic player, we would not need the
concept of genetic memory and the complementary approach to biological organization to begin with! 

In his self-reproducing scheme, Von Neumann [Von Neumann ,1966] referred to the process of constructing
an automaton from interpreting a description as the active role of descriptions. As discussed in the previous
section, we do not regard genetic memory as computer program that completely specifies a dynamic
automaton, as in Von Neumann’s self-reproducing automata. However, it is useful to regard the process of
reading genetic memory to construct a protein as the active role of material representations. What really takes
place is a construction and not a standing-in process, therefore the concept of an active role of representation
is elucidative.

Extrapolating from genetic memory to material representations at large, if they occur in other dynamical
systems, we defend that representations do not participate in dynamical processes, not even in a standing in
role. Rather, via a code (or Haugeland’s representational scheme) they are (actively) used for constructing
or specifying dynamic products. More specifically, dynamically incoherent (inert) material structures are used
as representations to be decoded into dynamic products. In this active role, representations are indeed used
to produce and guide dynamics and behavior, as Haugeland requires, but not by standing-in for something
else, and rather by being used as information to construct something else. We can think of this construction



3 To say “arbitrary code” is actually redundant, since arbitrariness is a condition for having a code to begin
with (Umerez, 1995). The point is that the content of the (symbolic) representations does not depend on their
physical characteristics. There is no known reason to disclaim the idea that the current genetic code could have been
set up differently, that is, with different RNA codon - amino acid relations defined by tRNA molecules [Crick, 1968]
[Hoffman, 1975].

13

process as the semantics of material representation [Rocha ,2001]. Instead of conceiving semantics as a
substitution relation, using genetic memory as a foundation, we conceive semantics as a construction process:
a mapping from dynamically incoherent material symbols onto dynamic products.

But the material representations of the genetic system function in yet another role, what Von Neumann
referred to as the passive role of descriptions, which turns out to be useful, in fact essential, for open-ended
evolution through natural selection [Rocha ,2001]. In this role, memory is produced, manipulated, changed,
and copied, but without any reference or recourse to its content. That is, without decoding its content.
Biological examples of these operations are the transcription of mRNA from DNA, RNA editing processes
[Rocha ,1995] [Bass, 2001], and most important for natural selection, mutation and sexual recombination
(variation). We can think of the manipulation of material representations without recourse to content as the
syntax of matter-symbol systems [Rocha ,2001].  Notice that in this passive role, representations also do not
stand in for content and furthermore are not even used to produce or guide dynamics or behavior, but rather
to disseminate existing or produce new representations. Because of this role, representations can be
communicated and novelty created.

Now, eventually, the ultimate value of material representations is found when their content is expressed in
an environment. The environmental ramifications of the encoded constructs, the phenotypes, are a result of
their success is such environment. We can refer to this process as the pragmatics of representations: the
survival of the encoded dynamics. 

5.2 Requirements for Material Representations

Genetic memory contains material representations which do not stand in, but are rather used to construct
content (active role), and are useful for communication and variation, essential characteristics for  open-ended
evolution and natural selection (passive role). How does this apply to a more general notion of representation,
particularly at the cognitive level? Let us summarize what material representations entail. 

Requirement1: Dynamically Incoherent Memory. Material representations demand inert physical structures
which can effectively be seen as dynamically incoherent regarding the overall machinery in which they are
utilized as representations. The role of these physical structures is not defined by their dynamic characteristics
but rather by their informational value. Let us refer to these structures as symbols. Symbols  must have the
ability to be manipulated and combined into new symbols. The set of possible symbol manipulations defines
the syntax of the representations.  Syntax is required for communication and for variation, both essential for
natural selection. Biological examples of inert structures are DNA molecules, of material symbols are codons,
and of representations are genes, or the portions of DNA that encode specific proteins. 

Requirement 2: Construction Code. There needs to exist machinery to construct arrangements of building
blocks (which subsequently self-organize  to produce some dynamic behavior ) from the representations of
requirement 1 – an arbitrary construction code3. This code leads us to think of the semantics of representations
as a material affair, rather than an abstract, surrogate relationship between internal and external elements of
a system. Here, representations are conceptualized as something used to start off, not stand in for dynamic



14

processes.  They are used to, literally, materialize dynamical systems. In our view of material representations,
semantics is about construction of dynamics and behavior. This construction is not about correspondence
between internal and external elements, but about a material process of controlling the behavior of embodied
agents in an environment. Symbols and representations are dynamically incoherent elements that make this
control process possible by providing selectable alternatives for dynamic outcomes.

Requirement 3: Self-organization and Selection . The encoded building blocks, after construction via the code
of requirement 2, self-organize at different levels: the first products of the self-organization of dynamic
building blocks (e.g. amino-acid chains), become themselves building blocks (e.g. proteins) for other self-
organizing processes, and so on. After expression of representations into building blocks,  for evolution to
occur, a feedback selection mechanism must exist to favor the representations of successful dynamic
outcomes: the pragmatics of representations. In natural selection, this feedback is instantiated by increasing
rates of reproduction of the more successful agents.

5.3 Material Representations for Cognitive Science

We do not offer the notion of material representation as an explanation of the mind, but rather as a set of
guidelines to think about representations in a dynamical systems setting. If material representations exist in
cognition, they must be implemented in arrangements of the dynamic components of the brain. First and
foremost we need a set of such arrangements which may be considered inert (in the sense described in section
4) vis a vis the dynamics of the brain, to be reliably used as memory. Note that we can restrict the components
of such arrangements to neural states, or we can pursue a more situated, extended view of cognition which
includes not only bodily but also environmental components [Clark ,1996]. 

The three requirements of section 5.2 give us some important insights into what cognitive representations,
based on our gene-inspired, material representations would be. Material representations are not necessarily
something internal to a cognitive agent standing in for something else external. Rather, they are low-level
components used to control and produce dynamic behavior more effectively, and may even be meaningless
to the overall system that uses them. Just like a single gene may not have a single identifiable phenotypic
outcome, material representations do not necessarily represent any high-level observable in a cognitive
agent’s environment. They should simply be seen as mappings to construct dynamic outcomes from
dynamically incoherent symbols (active role), and not as stand-ins for something external.

Our view, however, begs at least two questions: How do cognitive organisms store or organize their high-
level, organism-environment content? And, how can neural states organize to produce the low-level
dynamically incoherent representations? The speculative answer to the first is that by analogy with biology,
higher level behavior is produced by a process analogous to biological development. That is, a completely
dynamic self-organization of building blocks whose initial conditions are encoded in lower-level
representations. To approach the second question a bit less speculatively, in the next section we study the
emergence of symbols in dynamical systems simulated by cellular automata.

The advantage of representations for controlling dynamics in living organisms is biological fact. It seems
plausible that the same benefits may be discovered by other dynamical systems including embodied cognitive
systems. Since we make use of symbols in human language in much of the same way Biology does in the
genetic system, it is reasonable to expect that cognition itself makes use of material representations in the
brain and its environment. Much research will need to be pursued in order to identify  neural/environmental
elements that pass the requirements of the previous section.  It is beyond the scope of our expertise to propose
such research. Nonetheless, using artificial life, we can certainly explore the process of emergence of



15

representations from dynamical systems. In sections 6 and 7 we study such an emergence process in cellular
automata.

6. EMERGENT COMPUTATION IN CELLULAR AUTOMATA

6.1 Evolution of Cellular Automata for Nontrivial Computational Tasks

One-dimensional cellular automata (CA) are arguably the simplest instances of parallel distributed
architectures used to model dynamical systems and self-organization computationally. They consist of a
one-dimensional lattice of N identical cells, each a state-determined automaton with k possible states. Here,
only two-state CA are considered, i.e., k=2. Let si(t) denote the state of cell i at time t, with si 0 {0,1}. Each
cell is “connected” to 2r other cells which we think of as its neighborhood of radius r. Usually, periodic
boundary conditions are employed, i.e., cells 1 and N are each other’s neighbor. In homogeneous CA, each
cell’s automaton is defined by the same local update rule N which takes as input the cell’s  neighborhood
state,  :i = (si-r (t),ÿ, si (t) ,ÿ, si+r(t)), and maps this to the new state of the cell at time t +1: si (t+1) = N(:i). 

The initial conditions for a CA are defined by a particular initial configuration (IC) of (typically random) cell
states. In discrete time steps, all the cells subsequently update their state synchronously according to the
update rule N. This update rule can be represented by a lookup table with one entry for each of the 22r+1

possible neighborhood configurations : and their corresponding output values for s(t+1). Given that each
output value s(t+1) can either be a 0 or a 1, there are possible one-dimensional, two-state, radius r CA.222 1r+

Here we deal with CA rules of radius r=3, thus the lookup table contains 128 entries , and there are .3.4×1038

such rules.

Das et al [Das et al, 1994] [Das et al, 1995] used a genetic algorithm to evolve one-dimensional, two-state,
r = 3 CA to perform certain computational tasks. A genetic algorithm (GA) is a search procedure modeled
after natural selection [Holland, 1975]. The GA maintains a population of candidate solutions (phenotypes)
to a given problem , usually encoded as bit strings (genotypes). In this case, each CA rule is encoded as a 128
bit string, where each bit encodes the outcome of each entry  in the rule’s lookup table. Each candidate
solution is assigned a fitness value according to how well it solves the given problem. New generations of
candidate solutions are created from existing solutions according to fitness scores; the higher the fitness the
higher the chances of a solution being selected for the population of solutions in the next generation.
Variation is also applied to the encoded solutions via bit string crossover and random mutation [Goldberg,
1989] [Mitchell, 1996]. This way, the GA is biased to evolve good solutions through an idealized model of
genetic variation and selection.

CA have been evolved via GA to solve several computational tasks, such as the density classification task
(a.k.a majority classification problem). For this task, the goal is to find a CA that decides whether or not the
IC contains a majority of 1s (i.e., has high density). Let D0 denote the density of 1s in the IC. If D0 > 1/2, then
within M time steps the CA should reach the fixed-point attractor configuration of all 1s (i.e., all cells in state
1 for all subsequent iterations); otherwise, within M time steps it should reach the fixed-point configuration
of all 0s. M is a parameter of the task that depends on the lattice size N. Since the CA cells have access only
to local interactions (with other cells within radius r), this task requires the CA to propagate information



4 This rule is defined by a 128-bit string as discussed above. The hexadecimal representation of this string,
where each hexadecimal digit should be converted to the corresponding 4-bit binary string, is:
0504058705000F77037755837BFFB77F.

16

Figure 0: (a) Space-time diagram for NDMC given a random IC with a majority of dark cells. The
rule correctly classifies this IC in 141 iterations when applied to the density classification task. (b)
Space-time diagram with regular domains filtered out, depicting particles and their interactions after
the initial transient is removed.

across the lattice in order to achieve global coordination. In this sense, the task requires nontrivial
computation.

The unbiased performance PN,I(N) of a CA rule N on a given task is defined as the fraction of I randomly
generated ICs for which N reaches the desired behavior within M time steps on a lattice of length N. Here,
unless otherwise noted, we employ  N = 149, M = 2N and I = 105.

In the experiments of Das, Mitchell and Crutchfield [Das, Mitchell, and Crutchfield ,1994] one particular run
of the GA on the density classification task was discussed. Figure 1.a  shows the space-time diagram of one
of the CA rules evolved:  NDMC.4 The lattice is started with a random IC (0 is denoted by white, 1 by dark).
Each row in the space-time diagram shows the CA lattice at a particular time step t, and time increases down
the page.

6.2 Particle computation in evolved Cellular Automata

One thing that is immediately obvious is that there are large regular, relatively stable regions in the space-time
diagram. These regions are called regular domains. Examples in figure 1.a are the all white, all dark, and
checkerboard (alternating white and dark) regions. Crutchfield, Mitchell and Das [Crutchfield et al, 2002]



17

Regular Domains 70 = {0+}, 71 = {1+}, 72 = {(01)+}

Particles
(velocities)

" ~ 70 71 (–),  $ - 71 70 (0),  ( - 70 72 (-1), : - 72 71 (1), 
* - 72 70 (-3), 0 - 71 72 (3)

Observed
Interactions

decay "6( + :

react $ + ( 6 0, : + $ 6 * , 0 + * 6 $

annihilate 0 + : 6  71, ( + * 6  70

Table I: Catalog of regular domains, particles and particle interactions for rule NDMC

refer to the boundaries between these domains as particles. They are the localized patterns that move through
the lattice with a certain constant velocity. Finally, there are collisions between particles, which result in a
specific particle interaction scheme

These dynamical structures – domains, particles, and particle interactions –  are dynamic attractors or
emergent properties of the CA (see section 3). It is typically very hard, or even impossible, to derive these
emergent structures directly from the 0s and 1s in the CA lookup table. They are only apparent after iteration
of the CA rule N, and examination of the corresponding dynamical space-time behavior. Domains and
particles were defined formally in the computational mechanics framework [Hanson and Crutchfield, 1992]
[Crutchfield and Hanson, 1993]. Computational mechanics furthermore provides a way of suppressing (by
way of filtering out) the domains in a space-time diagram, making the particles more explicit. An example
of the result of this filtering process for NDMC is shown in figure 1.b.

Particles behave according to certain rules. For example, they have a certain constant velocity at which they
move through the lattice. Velocity is defined as the number of cells the particle moves at each iteration of the
CA; it is positive if the movement is to the right of the lattice, and negative to the left. Particles also interact
with one another according to deterministic rules. These rules and the velocities of particles are referred to
as a particle catalog for a given CA. Typically, such a catalog is based on a small number of particles, ", $,
*, (, 0, and :,  and a small number or rules such as: $ + ( ÷ 0, meaning that when particles $ and ( collide,
the 0 particle results. We can think of these deterministic rules as a production grammar in which the presence
(collision) of two particles produces other particles. The catalog of two-particle interactions for rule NDMC is
shown on table I.  

Particles transfer information about properties of local regions across the lattice to distant sites. Crutchfield,
Mitchell ,and Das [Crutchfield, Mitchell, and Das ,2002] defend that particle collisions are the loci of
information processing and result in either the creation of new information in the form of other particles or
in annihilation. 

Hordijk et al [Hordijk et al, 1998] used the computational mechanics framework to collect and catalog particle
properties, using them to construct a formal model of the evolved CA’s computational capabilities. This
“embedded-particle model” abstracts away from the individual cells in the CA space-time configurations and
models the behavior of a CA rule at the level of the emergent particles. Indeed, a close agreement between
the predicted (model) and actual (CA) performances was found, which shows that the particle-level
description of  CA behavior captures the main mechanisms by which the CA transfers and processes local
information to accomplish the computation required by the given task. 



5 This rule in hexadecimal format is 027D3AF97AEF1E6F507AE57F35FEE767.

18

Figure 2: Space-time diagram of block
expansion rule Nblock when applied to
the density task.

We can thus say with confidence that the particle interaction scheme instantiates a rule system used to
integrate local information in the lattice, and produce a final global outcome. The rules in the particle
interaction catalog are similar to a production grammar for CA particles. What is exciting about these
production rules is that they are not specified in the lookup table of the rule, but are rather a product of the
space-time dynamics of the CA. Thus, by using an artificial evolutionary algorithm, a CA was evolved to
produce a rule-based system which can integrate local information globally to solve the nontrivial density
task, even though its update rule has access only to local information (its neighborhood). Next  we discuss
the role of particles as information processing entities, and, as suggested by Mitchell [Mitchell ,1998], as
representations.

7. EMERGENT MEMORY IN EVOLVING AUTOMATA

Most CA rules evolved with the evolutionary process described in
section 6 show very simple space-time patterns: they try to solve the
problem by block-expansion, that is, when large neighborhoods of
either “1” or “0” states exist in the initial configuration, they are
expanded. Figure 2 shows a space-time diagram of one such rules:
Nblock.5 These block expansion rules tackle the density task by a kind
of a domino expansion: by taking into account only local information
of a ‘0' or ‘1' local majority and propagating that majority directly to
neighbors. But, unlike the rules with intricate particle rule systems,
such as rule NDMC,   they lack the ability to integrate local information
to produce an accurate result. Indeed, the performance of block-
expansion rules is quite inferior to NDMC, which grants an obvious
evolutionary advantage to latter. 

Specifically, the performance (see section 6) of both rules for lattices
of 149 cells is: P149,I (NDMC) = 0.773 and P149,I (Nblock) = 0.641.
Furthermore, when we increase the size of the lattice, the difference is
even larger:   P599,I (NDMC) = 0.726, P999,I (NDMC) = 0.707, and P599,I

(Nblock) = 0.523, P999,I (Nblock) = 0.501. Whereas the NDMC rule maintains a similar level of performance for
larger lattices, the Nblock rule performs very close to random guessing. This fact means that indeed CA
endowed with particle interaction rule systems are capable of effectively integrating information from local
areas of large lattices, whereas block-expansion rules are not [Crutchfield and Mitchell, 1995].

7.1 Memory and Communication

To understand the system of particle computation in CA as a simple simulation of material representations,
we first need to understand how memory is used by CA with intricate particle systems. 

Ultimately CA are evaluated for their final dynamic behavior: for the density task, a stable attractor of all cells
at state 0 or 1. The objective of the evolved particles is to lead the CA dynamics into this very small set of



6 This domain repeats the word 01 in space and the pattern  01÷ 10 ÷ 01 þ in time.

19

Figure 3: NABK rule. (a) 4 intermediate domains: {(01)+}, {(010100)+}, {(110010)+},
{(111110)+}. (b) 7 intermediate domains: {(01)+}, {(110010)+}, {(111110)+}, {(000001)+},
{(111010)+}, {(001)+}, {(110)+}.

attractor states desirable for the task and selected by the GA. This way, particles are used to produce the
(initial) conditions for some target dynamic behavior. 

The target final (attractor) behavior is a regular domain in the space-time description. To reach it, the evolved
CA employs several intermediate domains in subsets of their lattices  (see section 6). These regular domains,
being regions that are “space- and time-translation invariant” ( [Crutchfield, Mitchell, and Das ,2002],  page
17] can be seen as memory structures. Each domain is defined by a cyclic repetition of strings (words) from
its regular language (the 0's and 1's of the CA) in space and time. Unless otherwise perturbed, these domains
retain their cycles in space and time.  For instance, for the CA NDMC (see figure 1) we observe the three
domains specified in Table I. 70 and  71 refer to the two desired outcomes for the density task, while  72

refers to an intermediate domain used in the process of integrating lattice information and  producing the final
outcome6. Indeed, the introduction of intermediate domains in CA with intricate particle systems, is their key
difference from block-expansion rules, which simply propagate the final outcome domains  70 and  71. Here
we define CA with intricate particle systems, as those CA that employ at least one intermediate domain.

Domains interact in turn with one another  by one taking over the other or by establishing an inalterable
border. In either case, their interaction defines the particles described in section 6. In the first case, we obtain
particles (e.g. : and ( in figure 1.b) which propagate in the direction of the receding domain, at greater or
lesser velocity, while in the second case we obtain a particle (e.g. $ in figure 1.b), with zero velocity, which
maintains the same lattice position in time, creating a vertical line in the space-time diagram.

The CA with intricate particle systems use the intermediate domains as memory stores for intermediate
results, and the particles to communicate these results across the lattice. Furthermore, the particle interaction



7 With genetic programming rather than genetic algorithms. The rule is defined by the following
hexadecimal string: 050055050500550555FF55FF55FF55FF.

20

Figure 4: Implementation of logical tasks in one-dimensional CA. (a) The lattice is divided into two halves A and B
each interpreted as a separate logical variable whose value is “1" if there if it contains a majority of cells in state
“1", and “0" otherwise. (b) The space-time lattice is periodic; the first cell neighbors the last. (c) Logical table for
“And” and “Or”.

rules are used to integrate the information stored in the various intervening domains  to ultimately produce
a final homogeneous lattice state. Notice that the content of the memories stored in the domains is at best task-
specific. 72  in NDMC denotes the presence of a majority of cells with state 1 to one side and 0 to the other in
the initial lattice. Its presence in the CA is also used to give equal weight to the 70 and 71 domains; without
it, CA are forced to favor and expand either 70 or 71 as block expansion rules do. With the third intermediate
memory state, 70 and 71 do not expand into one another, but only into 72.  The inclusion of an additional
memory state, establishes a more effective means to solve  the density task in a distributed manner.

But,  intermediate domains do not necessarily have an obvious meaning regarding the ultimate task. For
instance, Andre, Bennet and Koza [Andre et al, 1996] evolved a CA rule, NABK, for the density task7 with at
least 8 intermediate domains besides 70 and 71 (see figure 3). These domains seem to be used very effectively
to account for different concentrations of 1's and 0's in the initial lattice, creating what seems to be a gradation
of intermediate memory states. Indeed the performance of this rule is higher than NDMC’s :  P149,I (NABK) =
0.826,    P599,I (NABK) = 0.766, and P999,I (NABK) = 0.73.  The NABK CA rule is an example of a very intricate
particle  interaction system, used to produce the expected CA behavior to solve the density task, but where
the content of each memory store (domain) is not obvious – unlike the NDMC rule.  This relates to our earlier
observation that the content of representations does not need to be meaningful externally.

What we need now to investigate is if domains, particles and particle interaction rules in these CA can be seen
as a simulation of material representations where  memory is used in both active and passive roles. The next
subsection details some additional experiments we have conducted to better understand the characteristics
of emergent particles and memory in CA.



21

Regular Domains 70 = {0+}, 71 = {1+}, 72 = {(01)+}, 73 = {(110)+}w{(001)+} 

Particles (velocities)

" ~ 71 70 (–) 
$ - 70 71 (0), $` - 70 73 (0),  $`` - 73 71 (0),
( - 71 72 (-1), * - 72 73 (-3),  , - 71 73 (3),  0 - 70 72 (3), 
: - 72 70 (1),  < - 73 70 (-3), 
Note: The domain combinations  72 71, and 73 72 were not observed as
stable boundaries or particles. 

Observed
Interactions

decay "6( + :

react
$ + ( 6 0,  $``+ ( 6 < + 0,
: + $ 6 * + $``, : + $` 6 * , 0 + * 6 $`, ( + * 6 ,,
, + < 6 ( + :

annihilate $`+ < 6  70 , 0 + : 6  70, , + $`` 6  71

Table II: Catalog of regular domains, particles and particle interactions for rule NAND

7.2 Building up Memory: Logical Tasks

The role of domains as emergent  memory structures used for distributed information processing via the
particle interaction scheme can be further appreciated as we notice that memory can be built upon in order
to solve more complicated tasks. Rocha [Rocha ,1998b] [Rocha ,2000], conducted some additional
experiments to evolve CA which solve more than one task. The goal was the evolution of CA rules with
radius 3 which can solve both the density task and some related, but more complicated, logical tasks [Ibid].
Here we present a novel  analysis of the particle systems evolved for these tasks.

To implement logical tasks the CA lattice is functionally divided in two halves (the center cell is not used):
A and B (figure 4.a). Each half is interpreted as a separate logical variable in traditional logical operations.
A variable is “1” if there is a majority of “1” cells in its respective lattice half, and “0”otherwise. Notice that
since the boundary conditions of the lattice are periodic (see section 6), this lattice has two boundaries
between the two variables (halves) A and B (figure 4.b). The cells on the neighborhood of these boundaries
compute their values from cells in both halves, which  makes the computation along these boundaries
unreliable. However, since we are looking for global integration across the lattice,  the local errors at the
boundaries are not usually too relevant, especially as lattices grow in size.

The logical tasks AND and  OR, depend on the density value of the A and B lattice halves. Figure 4.c depicts
the AND and OR truth value tables, for the 4 possible density states of lattice halves A and B. Both logical
tasks are  related to the density task because when the density of both halves is below (over) 0.5, both logical
variables  are “0” (“1”), leading to a desired final lattice with all cells “0” (“1”). They differ from each other
and from the density task for the cases when the two halves of the lattice have opposing densities. The gist
of these logical tasks is that they should ideally perform the density task in each half, and then integrate the
results appropriately. 

Several rules were evolved with a GA whose initial population of 100 individuals was composed 20
individuals encoding some of the best rules evolved so far for the density task, including NDMC, NABK, as well
as rules evolved by Juillé and Pollack [Juillé and Pollack, 1998] and others [Rocha ,2000], and 80 randomly
generated individuals. The fitness function used in this GA was calculated from presenting each rule with 100
different IC’s, 50 to be analyzed by the density task, and the other 50 by either the AND or the OR task,



8 This rule is defined by the hexadecimal string:  005F1053405F045F005FFD5F005DFF5F.

22

Figure 5: Space-time diagram and respective particle interactions for NAND given a random IC, leading to an all
“0" lattice.

depending on the run. The 50 IC’s presented to the density task had their density of "1's" uniformly
distributed over the unit interval (just as the experiments described in 6). The 50 IC’s presented to the AND
(OR) task were biased to a uniform distribution of lattices where for 50% of lattices the density of at least one
of the halves A or B was "0" ("1"), and the other 50% the density of both halves was "1" ("0"). If we were to
use an unbiased distribution of lattices, only 25% of the time would the case of both halves having density
"1" ("0") be generated, thus making rules that always tend to "0" ("1") too favorable in the evolutionary
process.

From these experiments, several CA rules were evolved that can solve simultaneously the density task and
one of the logical tasks very well (details in  [Rocha ,1998b; Rocha ,2000] ). The significance of having rules
that can solve more than one task was discussed in [Rocha ,2000]. What we want to highlight here is the
manner in which evolved CA particle systems dealt with the different requirements for information
integration across the lattice demanded by the logical tasks. Because the logical tasks divide the lattice into
two halves, we expected evolved CA rules to create additional domains and particles which would behave
more like static, local  memory stores, whose information could be accessed at a latter time as needed. 

Indeed this is what we observed in the CA rule which best solved the AND task, NAND
8:   P149,I, AND (NAND) =

0.839. The strategy of this rule builds on rule NDMC by creating an additional intermediate domain, which
keeps local lattice information without expanding. The domain and particle catalog of NAND is detailed in
Table II. Figures 5, 6,  and 7 show space-time diagrams for this rule, with particle interaction schematics.

The most striking feature of the particle catalog of rule NAND is the existence of several particles with zero
velocity. These are particles which remain in the same position in the lattice until other particles collide with
them. Whereas rule NDMC had only one particle with zero velocity ($), rule NAND produces three such particles
($, $`, and $``). We named all these particles $, to highlight the similarity of their  behavior with particle $
of rule NDMC.



9 We note that 73 typically exists as {(110)+} but it can also exist as{(001)+}. We consider these patterns to
be the same domain because they behave in exactly the same manner in terms of particle interactions, and are in
effect interchangeable.

23

Figure 6: Space-time diagram and particle interactions for NAND given a random IC, leading
to an all “1" lattice.

Figure 7: Space-time diagram and respective particle interactions for NAND given a random IC, leading to
an all “1" lattice.

The particles $` and $`` both exist due to the fourth domain 73 introduced by rule NAND. This domain does
not expand into final domains 70 and 71 , so its borders with these domains, the particles, have velocity zero.
It only expands into intermediate domain 72 with particle *9. Domain  73 functions as a static intermediate
memory store. In rule NDMC, without 73, when the particles involving domain 72 collide with others, the result
is always one of the final domains 70 or 71, while in rule NAND  some collisions result in the additional
intermediate domain 73.  This way, domain 73, contained by static particles  $` or  $``, preserves an
intermediate result without spreading it into neighbor domains. The intermediate result can later be integrated
with particles from other lattice regions: a collision with particle < results in the all “0" domain 70, and a
collision with particle , results in the all “1" domain 71.

The existence of the fourth domain and its static particles is particularly useful for the logical tasks (“AND”



24

in this case). Because two arbitrary halves are defined, the task encourages the evolution of rules that can
“hold” intermediate results in one part of the lattice to be integrated with those from another part. Indeed, the
logical task can be better executed when a static type of memory is produced to hold intermediate results,
which in this case is implemented by domain 73 and its static particles $` and $``.

8. ARE THERE REPRESENTATIONS IN EVOLVING AUTOMATA?

In section 5 we defended that material representations possess two main roles: the active role referring to the
construction of  dynamic configurations from initial conditions encoded in  representations, and the passive
role referring to the ability to manipulate and communicate representations without recourse to content. We
also stressed that the passive role is only possible because representations are implemented as dynamically
incoherent memory. This lead to a view of representations which are not dynamic stand-ins, but are rather
constraints (initial conditions) on dynamics which can evolve with the dynamics, but are kept as a separate
type of material structure: memory. 

To decide if the process of emergent computation in CA described in sections 6 and 7 can be proposed as a
simulation of material representations, we now discuss if it meets the three requirements for material
representations proposed in section 5. We start in inverse order:

Requirement 3: Self-organization and Selection. 

This is the easiest requirement to meet in the evolving CA experiments, because the GA models the process
of natural selection, and the CA models a process of self-organization. Clearly, both tools are very incomplete
models of the natural phenomena, but they do capture  the essential characteristics we need to model here.
Self-organization is modeled by the parallel, state-determined transitions of cellular automata. The GA
models a feedback mechanism that increases the reproduction rates of those CA rules which best solve a task.
If the evolved particle catalog is a representation system, then those systems that best solve the task are
selected. Indeed, if one tracks the artificial evolutionary process (e.g. as Das, Mitchell and Crutchfield [Das,
Mitchell, and Crutchfield ,1994] do), we can see the step by step evolution of a better and better particle
interaction scheme, as the behavior of particles changes to accommodate the task.

Requirement 2: Construction Code. 

We can think of the set of  particle interaction rules that emerge in the evolving CA experiments, as a process
that maps between the random initial state of the CA lattice (IC), into a final desired state for the task.
Crutchfield, Mitchell ,and Das, [Crutchfield, Mitchell, and Das ,2002] regard this process as a computation
that produces a final outcome from the IC input. As we detail below, we do not see this process as a
computation, but it can be seen as the construction of a desired dynamics. Wether or not we can conceive
the individual particles as representations, they are certainly the elements in the space-time behavior of the
CA which communicate information across the lattice: the loci of information processing [Ibid]. Therefore,
the collection of particle interactions in space-time, is a process of integration of the information carried by
each of the individual particles into a final desired dynamical outcome. We can thus say that, from the
individual particles generated initially given the IC, the particle interaction rules construct with their collisions
the (initial) conditions for a target attractor behavior . Therefore, the set of particle interaction rules is a
construction code for obtaining a desired dynamical behavior from a set of particles – a code that mediates
between information carrying entities (the particles) and dynamical behavior (a final attractor state).



25

Notice also that the particular particle interaction scheme is malleable to evolution. There is in this sense an
arbitrary relationship between particles and the results of a specific particle interaction scheme. We can
appreciate this by contrasting the particle interaction schemes of rules NDMC and NAND. The evolutionary
process tweaked the first to endow the second with a few more particles and interaction behavior. There is
a very large set of possible CA rules leading to different particles and particle interaction schemes, which
justifies our assertion that, evolutionarily, the mapping between particles and final dynamic outcomes
instantiated by a particle interaction scheme is an arbitrary code.

Requirement1: Dynamically Incoherent Memory

Above we considered the evolved CA particles as the candidates for representations. For them to be seen as
representations as defined in section 5, they would need to be dynamically incoherent with the rest of the CA
dynamics. Clearly, particles are used for communication across the CA lattice, but the manner in which they
are used is not truly dynamically incoherent – they are not inert in the sense described in section 5. Also, the
particles cannot be used without direct access to their content – there is not a syntax for symbol manipulation.
Let us elaborate on this.

Dynamically incoherent symbols require random access memory. That is, memory that can be accessed at
any time, and whose value is independent of dynamics. This is the same as saying that the value of the
memory is the same independently of the rate of access to it. When a computer stores the value of a variable
in a memory store (e.g. the tape in a universal Turing machine), that value remains unchanged when accessed,
and the speed of the computer to access the memory and perform computations also does not change it.
Similarly, a computation is a process of integrating memory in store, with algebraic and logical operations.
But speed of the computer does not change the value of the computation: 2+2=4 in any computer.

Clearly this does not happen with the particles of the evolved CA. Particles have a velocity, and the result of
all particle interactions in space-time depends on when the particles meet each other, which depends on the
velocity of the particles. If the particles start from different locations in the lattice, even preserving lattice
density, they may collide differently and produce a different outcome for the tasks we studied here.  It is as
if 2+2=4, only when 2 and 2 meet at the right time. This is why we do not see the process of particle
interactions as a computation, but rather as a construction code.

It was because of this issue that we created the logical tasks. In this case, the evolved CA came as close as
possible to creating dynamically incoherent memory stores. Indeed, the  fourth domain 73 created by rule
NAND, as discussed in section 7, is a domain that preserves its memory without spreading it into the final
outcome domains 70 and 71. In a sense, it keeps its memory until it is accessed. The several particles $
created by this rule have zero velocity, therefore they preserve the same information until a particle of non-
zero velocity collides with them. In this sense, they function more like traditional memory stores.

However, the information they store is still not separated from the dynamics. They are not inert in the sense
that DNA is. It is by virtue of their dynamics, the way they collide, that information is expressed. Conversely,
in DNA, information is read out of DNA by “third-party” machinery, without destroying or reacting with it.
So while the $ particles of the evolved CA were able to create static memory stores, these are still reactive
with the embedding dynamics. Therefore, the information they carry, is expressed in dynamic reactions,
which destroy them, and not via a separate encoding. 

This point is obvious when we notice that while processes such as the transcription of mRNA from DNA and
RNA Editing work on genetic memory without access to its content (the encoded proteins), our evolved CA



26

cannot manipulate their particles without access to their content. Particle reactions are simply domain
interactions. In this sense, information carriers (would-be representations) and content are inseparable. This
way, we can say that while the evolved CA particles observe the active role of representations, as they
construct specific dynamics from the interaction rules (a construction code), they do not observe the passive
role of representations we defined in section 5. They do not function as inert memory stores, which can be
manipulated without access to content. As a corollary, if particles are not symbolic representations, their
interaction to solve a task is not a computational process, in any traditional sense [Rocha ,1995].

9. WHERE TO?

In this article we presented a definition of representation based on what we know about genetic memory. Our
key observations are that representations are mechanisms used to control dynamics more effectively, by
encoding information to construct alternative dynamic configurations. They are not stand-ins in dynamic
processes, and do not need to refer to situations external to a given dynamics (sections 4 and 5). We also
propose criteria to decide if a given structure is a material representation: 

1. Dynamically incoherent memory: information in representations can be used without
access to content and is implemented in non-reactive structures.

2. Construction code: information in representations is used to construct dynamic
configurations; representations encode alternative initial conditions for a dynamical
system-environment coupling.

3.  Self-organization and selection: representations are material structures existing under the
constraints of self-organization and are selected in an evolutionary process.

We also discussed experiments with CA leading to the evolution of rules that can solve non-trivial tasks, and
presented new results for this problem. We discussed if the evolved CA particles may be seen as
representations according to our criteria. While these particles capture the active role of representations
(construction code), they do not capture the passive role (dynamically incoherent memory). Does this mean
that we cannot study the emergence of material representations computationally?

Our stumbling block was in obtaining the necessary separation between representations and content, that is,
of obtaining a means to manipulate representations without recourse to content (syntax). This has been a
recurrent stumbling block in Artificial Life. For instance, Langton [Langton ,1986] proposed a self-
reproduction scheme in CA in which the separation between genotype (information) and phenotype (content)
was blurred. This lack of separation was actually seen as a worthwhile model for studying Artificial Life, with
a generalized concept of genotype/phenotype mappings [Langton ,1989]. But as it was clear for theoretical
biologists looking at Artificial Life, a strict separation between genotype and phenotype is the key feature
of life-as-we-know-it [Pattee ,1995a] and a necessary  condition for open-ended evolution [Von Neumann
,1966] [Pattee ,1995b] [Rocha ,2001]. Thus, the study of the emergence of a strict separation between
genotype and phenotype, between representations and content, from a purely dynamic milieu should still be
the number one goal of Artificial Life.

The evolving CA experiments here described are an ideal testbed for studying the emergence of information
processing from self-organizing systems. The experimental model contains all the necessary ingredients: self-
organization, selection, and the requirement of global information integration from local sources. As
demonstrated in this article with the evolution of rule NAND to solve the AND task, we come very close to
producing proper static memory stores. But the dynamics produced by one-dimensional CA may be too
simple to achieve what we desire to model. 



27

Indeed,  homogeneous CA as a model of material dynamics, our artificial chemistry, is rather poor. In
Biology, the genotype/phenotype mapping is based on the existence of two basic, distinct  types of material
(chemical) structures: DNA/RNA and aminoacid chains. Both are quite different: DNA is remarkably
unreactive, or biochemically inert, whereas aminoacid chains are incredibly rich biochemical machines. In
contrast, our one-dimensional homogenous CA compute the same exact update rule in each cell.

It seems reasonable that in order to evolve a system in which more reactive structures use non-reactive
structures as information stores, we need to work with more heterogeneous dynamical systems where
different populations of artificial “chemistry” structures interact. Perhaps heterogenous CA will suffice, or
we may need more intricate models of artificial chemistry such as that of Fontana [Fontana, 1991]. But we
should still retain the complete “hands-off” approach of the evolving CA experiments. We should not  pre-
assign which types of structures are information carrying and reactive ones, such functional assignment
should emerge from the experiments. The pre-assignment is  very reasonable in computational studies of the
origin of the genetic code (e.g. [Wills ,2001]), which we know exists, but not when we wish to study the
evolution of representations from a dynamical milieu at large – a very worthwhile goal for Artificial Life.

REFERENCES

Andre,D., Bennett III,F.H., Koza,J.R., [1996]. "Discovery by Genetic Programming of a Cellular Automata Rule
that is Better than Any Known Rule  for the Majority Classification Problem". In: Genetic Programming 1996:
Proceedings of the First Annual Conference, July 28-31, 1996, Stanford University. Koza,J.R., Goldberg,D.E.,
Fogel,D.B., Riolo,R.L. (Eds.), MIT Press, pp. 3-11.

Bass,B., [2001]. RNA Editing. Oxford University Press.
Bedian,V., [1982]. "The possible role of assignment catalysts in the origin of the genetic". Origins of life.  12 (2),

181-204.
Bedian,V., [2001]. "Self-description and the origin of the genetic code". Biosystems. 60 (1-3), 39-47.
Beer,R.D., [1995]. "A dynamical systems perspective on agent-environment interaction". Artificial Intelligence. 72

(1-2), 173-215.
Bickhard,M.H., [2002]. "The Biological Emergence of Representation". In: Emergence and Reduction: Proceedings

of the 29th Annual Symposium of the Jean Piaget Society. Brown,T., Smith,L. (Eds.). Erlbaum, pp. 105-131.
Cassirer,E., [1957]. Language and Myth. Dover.
Clark,A., [1996]. "Happy couplings: emergence and explanatory interlock". In: The Philosophy of Artificial Life.

Boden M. (Ed.). Oxford University Press, pp. 262-281.
Conrad,M., [1993]. "Adaptability theory as a guide for interfacing computers and human society". Systems

Research. 10 (4), 3-24.
Crick,F., [1968]. "The origin of the genetic code". Journal of Molecular Biology. 38, 367-379.
Crutchfield,J.P., Hanson,J.E., [1993]. "Turbulent pattern bases for cellular automata". PHYSICA D. 69, 279-301.
Crutchfield,J.P., Mitchell,M., [1995]. "The evolution of emergent computation". Proc. National Acadamy of

Sciences. 92, 10742-10746.
Crutchfield,J.P., Mitchell,M., Das,R., [2002]. "The Evolutionary Design of Collective Computation in Cellular

Automata". In: Evolutionary Dynamics: Exploring the Interplay of Selection, Neutrality, Accident, and
Function. Crutchfield,J.P., Schuster,P.K. (Eds.). Oxford University Press, pp. 361-412.

Das,R., Crutchfield,J.P., Mitchell,M., and Hanson,J.E., [1995]. "Evolving globally synchronized cellular automata".
In: Proceedings of the sixth International Conference on Genetic Algorithms. Eshelman,L.J. (Ed.), Morgan
Kaufmann, pp. 336-343.

Das,R., Mitchell,M., Crutchfield,J.P., [1994]. "A genetic algorithm discovers particle-based computation in cellular
automata". In: Parallel Problem Solving from Nature - PPSN III International Conference on Evolutionary
Computation The Third Conference on Parallel Problem Solving from Nature, 9-14 Oct. 1994, Jerusalem,
Israel. Davidor,Y., Schwefel,H.-P., Manner,R. (Eds.), Springer-Verlag, pp. 344-353.

Dretske,F., [1995]. Naturalizing the Mind. MIT Press.



28

Eigen,M., [1992]. Steps Towards Life: A Perspective on Evolution. Oxford University Press.
Emmeche,C., Hoffmeyer,J., [1991]. "From language to nature - the semiotic metaphor in biology". Semiotica. 84

(1/2), 1-42.
Fontana,W., [1991]. "Algorithmic Chemistry". In: Artificial Life II. Langton,C.G., Taylor,C., Farmer,J.D.,

Rasmussen,S. (Eds.). Addison-Wesley, pp. 159-209.
Freeman,w.j., Skarda,c.a., [1990]. "Chaotic dynamics versus representationalism". Behavioral and Brain Sciences.

13 (1), 167-1990.
Garrett Millikan,G., [1984]. Language, Thought, and Other Biological Categories. MIT Press.
Goldberg,D.E., [1989]. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
Goodwin,B., [1994]. How the Leopard Changed its Spots: The Evolution of Complexity. Charles Scribner's Sons.
Hanson,J.E., Crutchfield,J.P., [1992]. "The attractor-basin portrait of a cellular automaton". Journal of Statistical

Physics. 66 (5/6), 1415-1462.
HarnadS., [1990]. "The symbol grounding problem". Physica D. 42 (1-3), 335-346.
Haugeland,J., [1991]. "Representational Genera". In: Philosophy and Connectionist Theory. Ramsey,W.M.,

Stich,S.P., Rumelhart,D.E. (Eds.). Lawrence Erlbaum, pp. 61-89.
Hoffman,G., [1975]. "The stochastic theory of the origin of the genetic code". In: Annual Reviewes of Physical

Chemistry. Eyring,H., Christianson,C.J., Johnson,H.S. (Eds.). Academic Press, Vol. 26.
Holland,J.H., [1975]. Adaptation in Natural and Artificial Systems. University of Michigan Press.
Hordijk,W., Crutchfield,J.P., Mitchell,M., [1998]. "Mechanisms of Emergent Computation in Cellular Automata".

In: Parallel Problem Solving from Nature. Eiben, A.E., Back,T.H., Schoenauer,M., Schwefel,H.-P. (Eds.).
Springer-Verlag, pp. 613-622.

Huang,C.F., Rocha,L.M., [2003]. "Exploration of RNA Editing and Design of Robust Genetic Algorithms". In:
Proceedings of the 2003 IEEE Congress on Evolutionary Computation. Canberra, Australia, December 2003.
Sarker,R. (Ed.), IEEE Press, pp. 2799-2806.

Jackendoff,R., [2003]. Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford University Press.
Juillé,H., Pollack,J.B., [1998]. "Coevolving the "ideal" trainer: application to the discovery of cellular automata

rules.". In: Genetic Programming Conference (GP-98), 22-25 July 1998, Madison, WI, USA. Koza,J.R.,
Banzhaf,W., Chellapilla,K., Deb,K., Dorigo,M., Fogel,D.B., Garzon,M.H., Goldberg,D.E., Iba,H., Riolo,R.L.
(Eds.), Morgan Kaufmann Publishers.

Kauffman,S., [1993]. The Origins of Order: Self-Organization and Selection in Evolution. Oxford university Press.
Langton,C.G., [1986]. "Studying artificial life with cellular automata". Physica D. 22 (1-3), 120-149.
Langton,C.G., [1989]. "Artificial Life". In: Artificial Life. Langton,C. (Ed.). Addison-Wesley, pp. 1-47.
McClelland,J.L., Rumelhart,D.E., Hinton,G.E., [1986]. "The appeal of parallel distributed processing". In: Parallel

Distributed Processing:Explorations in the Microstructure of Cognition, vol. 1: foundations. Rumelhart,D.E.,
McClellans,J.L. (Eds.). MIT Press, Vol. 1, pp. 3-44.

McCulloch,W.S., Pitts,W., [1943]. "A logical calculus of the ideas immanent in nervous activity". Bulletin of
Mathematical Biophysics. 5, 115-133.

Mitchell,M., [1996]. An Introduction to Genetic Algorithms. MIT Press.
Mitchell,M., [1998]. "A complex-systems perspective on the "computation vs. dynamics" debate in cognitive

science". In: Proceedings of the Twentieth Annual Conference of the Cognitive Science Society, August 1-4,
1998. Gernsbacher,m.a., Derry,s.j. (Eds.), Madison, Wisconsin, Pp. 710-715.

Moreno,A., Etxeberria,A., Umerez,J., [1994]. "Universality without matter?". In: Artificial Life IV: Fourth
International Workshop on the Syntheses and Simulation of Living Systems. Brooks,R., Maes,P. (Eds.), MIT
Press, pp. 406-410.

Newell,A., Simon,H.A., [1976]. "Computer Science as Empirical Inquiry - Symbols and Search". Communications
of the ACM. 19 (3), 113-126.

Nieselt-Struwe,K., Wills,P.R., [1997]. "The Emergence of Genetic Coding in Physical Systems". Journal of
Theoretical Biology . 187 (1), 1-14.

Pattee,H.H., [1982]. "Cell psychology: an evolutionary approach to the symbol-matter problem". Cognition and
Brain Theory. 5 (4), 191-200.

Pattee,H.H., [1995a]. "Artificial Life needs a real Epistemology". In: Advances in Artificial Life. Moran,F.,
Moreno,A., Merelo,J.J., Chacon,P. (Eds.). Springer-Verlag, Berlin, pp. 23-38.



29

Pattee,H.H., [1995b]. "Evolving self-reference: matter, symbols, and semantic closure". Communication and
Cognition - Artificial Intelligence. 12 (1-2), 9-27.

Pattee,H.H., [2001]. "The physics of symbols: bridging the epistemic cut". Biosystems. 60 (1-3), 5-21.
Pollack.R., [1994]. Signs of Life: The Language and Meanings of DNA. Houghton Mifflin.
Ramsey,W.M., Stich,S.P., Rumelhart,D.E., [1991]. Philosophy and Connectionist Theory. Lawrence Erlbaum.
Rocha,L.M., [1995]. "Contextual genetic algorithms: Evolving developmental rules". Lecture Notes in Artificial

Intelligence. 929, 368-382.
Rocha,L.M., [1996]. "Eigenbehavior and symbols". Systems Research. 13 (3), 371-384.
Rocha,L.M., [1998a]. "Selected self-organization and the Semiotics of Evolutionary Systems". In: Evolutionary

Systems: Biological and Epistemological Perspectives on Selection and Self-Organization. Salthe,S.,
vandeVijver,G., Delpos,M. (Eds.). Kluwer Academic Publishers., Dordrecht, pp. 341-358.

Rocha,L.M., [1998b]. "Syntactic autonomy". In: Joint Conference on the Science and Technology of Intelligent
Systems ISIC/CIRA/ISAS; September 14-17, 1998; NIST; Gaithersburg, MD IEEE Press, GAITHERSBURG,
MD, pp. 706-711.

Rocha,L.M., [2000]. "Syntactic autonomy : Why there is no autonomy without symbols and how self-organizing
systems might evolve them". Annals of the New York Academy of Sciences. 901, 207-223.

Rocha,L.M., [2001]. "Evolution with material symbol systems". Biosystems. 60 (1-3), 95-121.
Rocha,L.M., Joslyn,C., [1998]. "Simulations of embodied evolving semiosis: Emergent semantics in artificial

environments". Simulation Series. 30 (2), 233-238.
Rosen,R., [1993]. "Bionics revisited". In: The Machine as a Metaphor and Tool. Haken,H.K.A., Svedin,U. (Eds.).

Springer-Verlag, pp. 87-100.
Thelen,E., Schoner,G., Scheier,C., Smith,L.B., [2000]. "The dynamics of embodiment: a field theory of infant

perseverative reaching". Behavioral and Brain Sciences. 24 (1).
Thompson,E., [1997]. "Symbol grounding: A bridge from artificial life to artificial intelligence". Brain and

Cognition. 34 (1), 48-71.
Umerez,J., [1995]. "Semantic closure: A guiding notion to ground artificial life". Lecture Notes in Artificial

Intelligence. 929, 77-94.
Van Gelder,T., [1998]. "The dynamical hypothesis in Cognitive Science". Behavioral and Brain Sciences. 21, 615-

665.
Van Gelder,T., Port,R., [1995]. "It's about time: an overview of the dynamical approach to cognition". In: Mind as

Motion: Explorations in the Dynamics of Cognition. Port,R., Van Gelder,T. (Eds.). MIT Press, pp. 1-43.
Varela,F., Thompson,F.E., Rosch,E., [1991]. The Embodied Mind: Cognitive Science and Human Experience. MIT

Press.
Von Neumann,J., [1966]. The Theory of Self-Reproducing Automata. University of Illinois Press.
Wheeler,M., Clark,A., [1999]. "Genic representation: Reconciling content and causal complexity". British Journal

for the Philosophy of Science. 50 (1), 103-135.
Whitehead,A.N., [1927]. Symbolism: Its Meaning and Effect. Macmillan, New York.
Wills,P.R., [2001]. "Autocatalysis ; information and coding". Biosystems. 60 (1-3), 49-57.
Wuensche,A., Lesser,M., [1992]. The Global Dynamics of  Cellular Automata:  An Atlas of Basin of Attraction

Fields of One-Dimensional Cellular Automata. Addison-Wesley.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


