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Abstract We provide a formal but visually clear example of how a set of minimal
necessary conditions for evolvability of autocatalytic sets is satisfied in a simple
model of chemical reaction systems. Furthermore, we show how these conditions
can be captured and analyzed with RAF theory, and how the results can be gener-
alized with a somewhat more elaborate example. Finally, we argue that our results
clearly support the hypothesis that autocatalytic sets can be evolvable, and that
this might even be an expected property of such sets.
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1 Introduction

The idea of collectively autocatalytic sets was introduced as a “metabolism-first”
scenario in the context of the origin of life [16–18,2,3]. In this scenario, life sup-
posedly started as a functionally closed, self-sustaining reaction network in which
several molecules collectively support each other’s production from basic nutrients
through mutually catalyzed chemical reactions. This idea has not been without
criticism [19,22,32], but recent progress in constructing autocatalytic sets in the
laboratory supports its plausibility [24,1,29,30]. Over the past decade or so, the
concept of autocatalytic sets has been formalized mathematically and studied ex-
tensively in the form of RAF theory [27,11,6], leading to the refutation of some
of the earlier criticisms.
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One of the main criticisms against the concept of autocatalytic sets was their
apparent lack of evolvability [32]. In the original formulation, and its support-
ing arguments, autocatalytic sets appear as “giant connected components” within
a chemical reaction network [17,18], indeed leaving little room for change and
adaptation. However, in a follow-up study the same authors of [32] showed that
autocatalytic sets can actually be evolvable given a minimal set of necessary con-
ditions [31]. Whether this set of conditions is also sufficient for true open-ended

evolution is still unclear, and probably depends on whether new functionality can
emerge in the evolving system (which is unlikely in the polymer model used to
generate the results, even though the number and maximum length of polymers
is, in principle, infinite). But these results clearly show that autocatalytic sets can,
at the least, show a form of pre-template Darwinian evolution.

The necessary conditions for evolvability of autocatalytic sets are based on the
notion of a viable core [31]. Informally, a viable core is a “minimal” autocatalytic
set. The set of necessary conditions is then as follows:

1. The availability of compartments that can grow and divide;
2. The existence of multiple viable cores within the (complete) underlying re-

action network that can potentially co-exist in various combinations inside a
compartment;

3. A mechanism for the spontaneous gain or loss of viable cores during the actual
dynamical “execution” of the reaction network.

Having multiple such viable cores that can co-exist in various combinations
within compartments which can grow and divide, allows for inheritance, variation,
competition, and thus evolvability. A “mutation” would be the (spontaneous) gain
or loss of a viable core within a compartment. A viable core can, for example, be
gained by a rare, spontaneous reaction that produces a “seed” molecule that is
required to make a viable core come into existence (in a dynamical sense). On
the other hand, a viable core could be lost during a compartment division with
an unequal distribution of molecules (due to stochastic fluctuations) between the
offspring compartments [31].

In this paper, we show how RAF theory can be used to formally capture,
exemplify, and analyze these necessary conditions, and how results obtained with
the formal RAF framework support the possibility for evolvability of autocatalytic
sets. In particular, we provide a minimal but visually clear example of how the
above necessary conditions are satisfied within a simple model of a chemical reac-
tion system, and how it can be analyzed and understood using RAF theory. We
then provide a more general example using a well-studied polymer model to show
that the results from the minimal example can be generalized. This, combined
with earlier results from RAF theory, suggests that evolvability is a general, and
perhaps even expected property of autocatalytic sets.

2 Autocatalytic sets and RAF theory

First, we define a chemical reaction system (CRS) as a tuple Q = {X,R, C} con-
sisting of a set X of molecule types, a set R of chemical reactions, and a catalysis
set C indicating which molecule types catalyze which reactions. We also consider
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the notion of a food set F ⊂ X, which is a subset of molecule types that are as-
sumed to be freely available from the environment. A graphical example of a CRS
is provided in Fig. 1.

Informally, an autocatalytic set (or RAF set) is now defined as a subset R′ ⊆ R
of reactions (and associated molecule types) which is:

1. Reflexively Autocatalytic (RA): each reaction r ∈ R′ is catalyzed by at least one
molecule type involved in R′, and

2. Food-generated (F): all reactants in R′ can be created from the food set F by
using a series of reactions only from R′ itself.

This definition captures the idea of a functionally closed (RA) and self-sustaining
(F) reaction network. A more formal definition of RAF sets is provided in [27,11,
9], including an efficient (polynomial-time) algorithm for finding RAF sets in a
general CRS.

If an RAF set does exist, the RAF algorithm returns the unique maximal RAF
set (maxRAF), which is the union of all RAF sets within a given CRS. If no RAF
set exists within a CRS, the RAF algorithm returns an empty set. A maximal
RAF set can often be decomposed into several smaller subsets which themselves
are RAF sets (subRAFs) [14]. If such a subRAF cannot be reduced any further
without losing the RAF property, it is referred to as an irreducible RAF (irrRAF)
[11].

Some of the main findings of RAF theory are that autocatalytic sets are highly
likely to exist in random (polymer-based) models of reaction networks once a
critical level of catalysis is exceeded [11,21]. This critical transition point already
occurs at very modest levels of catalysis: between one and two reactions catalyzed
per molecule type for moderate sized networks [11,8]. Moreover, only a linear
growth rate in this critical level of catalysis is required to ensure that RAF sets
exist with high probability for increasing polymer lengths [11,21]. These results
hold up under a variety of more realistic model extensions, and even for non-
polymer systems [9,15,25,7]. Generally, there exist many hierarchical levels of
subRAFs [14] (as opposed to having one “giant connected component”). Finally,
the formal RAF framework can be directly and successfully applied to real chemical
and biological systems to analyze the emergence and structure of autocatalytic sets
[12,26].

An irrRAF is roughly the equivalent of a viable core as described in [31].
Formally the equivalence is not exact: although every irrRAF can be considered a
viable core, a viable core is either an RAF set or a slightly more general set that
we have called a “pseudo-RAF” [10]. A pseudo-RAF would need at least one of
its non-food molecules to come from somewhere else before the set as a whole can
come into existence (in a dynamical sense). Such a “seed” molecule could come,
by chance, from the environment, or be produced by some other (rare) reaction
that is not part of the set itself. However, for most purposes, and in the examples
below, viable cores and irrRAFs can be considered equivalent.

3 Conditions for evolvability: A formal example

Here, we provide a simple but formal example to show how the conditions for
evolvability of autocatalytic sets are satisfied in a particular instance of a simple
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polymer-type model of chemical reaction systems, and how they can be captured
and analyzed with RAF theory.

3.1 The CRS

We consider a particular instance of the Wills-Henderson (W-H) model [34,15].
The W-H model consists of binary polymers (bit strings) that can grow by the
ligation of a monomer (a 0 or a 1) to the end of a left-to-right oriented polymer.
The molecule set X consists of all bit strings up to a maximum length n. In our
example, we use n = 3. This value is small enough that the results can be easily
understood and verified by eye, yet large enough to already show relevant behavior
regarding the conditions for evolvability.

The set of reactions R in the W-H model consists of four categories: (R1)
ligation of a 0 to a bit string ending with a 0, (R2) ligation of a 1 to a 0, (R3)
ligation of a 0 to a 1, and (R4) ligation of a 1 to a 1. So, for example, a reaction
in category R1 looks like b0 + 0→ b00, where b is any (possibly empty) bit string
of length at most n− 2 [15]. Note that in the example used here, we only consider
reactions that create ligation products no longer than n = 3 bits.

Next, we assign two particular bit strings as catalysts: the bit string 000 cat-
alyzes reactions in the first category R1, and the bit string 111 catalyzes reactions
in the fourth category R4 (later on, in a slightly extended example, we also con-
sider additional catalysts). Finally, the food set F consists of the monomers 0 and
1.

The complete example CRS is thus as follows:

X = {0, 1}≤3

R = R1 ∪R2 ∪R3 ∪R4

C = {(000, r)|r ∈ R1} ∪ {(111, r)|r ∈ R4}
F = {0, 1}

This CRS is represented graphically in Figure 1.

3.2 RAF sets

Applying the RAF algorithm to this CRS results in a maximal RAF set R′ of four
reactions (this can be easily verified by hand):

R′ = {0 + 0→ 00, 00 + 0→ 000, 1 + 1→ 11, 11 + 1→ 111}.

Furthermore, this maxRAF can be decomposed into two independent irreducible
RAF sets (or viable cores):

R0 = {0 + 0→ 00, 00 + 0→ 000},
R1 = {1 + 1→ 11, 11 + 1→ 111}.
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Fig. 1 A graphical representation of the example CRS. Black dots represent molecule types,
white boxes reactions. Solid arrows are reactants going into and products coming out of a
reaction. Dashed arrows indicate catalysis. The food set consists of the monomers 0 and 1.

3.3 The simulation

To show how these irrRAFs can exist in various combinations within a compart-
ment, we perform dynamical simulations of the example CRS using the Gillespie
algorithm [4,5]. We assume that all reactions (in each category) can happen spon-
taneously (uncatalyzed) with a kinetic constant of ks = 0.1. Catalyzed reactions
(as determined by the catalysis set C) have a kinetic constant of kc = 1.0. In the
simulation, this kc is multiplied by the number of catalysts currently present in
the system to determine the actual reaction rates at each step.

We start the system with an initial concentration of 10 for each of the food
molecules (the monomers 0 and 1). During the simulation, the food molecule con-
centrations are kept at this level, i.e., each time a monomer is used in a reaction,
it is replaced by a new monomer of the same kind (to simulate influx of food
molecules into the compartment).

In addition, we assume that trimers (bit strings of length three) flow out of the
compartment at a given rate. These outflow reactions have a kinetic constant of
ko = 0.8, but these reactions are “catalyzed” by the trimer itself. In other words,
the actual outflow reaction rate of a trimer depends on its own concentration. This
can be interpreted as a kind of “osmotic pressure” condition, where the outflow of
molecules is larger the higher their concentration inside the compartment is.

Finally, we set the volume of the reaction vessel (compartment) to one, and
run the simulation for one time unit.

3.4 Basic results

In general, there are four possible outcomes of a simulation: (1) none of the irre-
ducible RAF sets have come into existence, (2) only irrRAF R0 exists, (3) only
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irrRAF R1 exists, and (4) both R0 and R1 exist. Outcomes (2) and (4) are illus-
trated in Fig. 2. Note that once an irrRAF comes into existence, the concentration
of the trimer it produces initially increases at an exponential rate (due to the au-
tocatalytic nature of the irrRAF), but then levels off (due to the increasing rate
of outflow of the trimer) until it reaches a (dynamic) equilibrium concentration.
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Fig. 2 Two of the four possible simulation results in terms of existence of irreducible RAF
sets (viable cores). Top: only R0 exists. Bottom: both R0 and R1 exist.

All simulations start with the exact same initial conditions, but due to the
stochastic nature of the Gillespie algorithm (as in real chemistry), different out-
comes are possible depending on which spontaneous reactions happen first and
when. Both irrRAFs (R0 and R1) initially require their reactions to happen spon-
taneously, i.e., uncatalyzed, at least once before the full irrRAF can actually come
into existence. From the RAF analysis we know that they are present in the un-
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derlying reaction network (i.e., at a static level), but whether they are actually
realized (i.e., at a dynamic level) depends on the occurrence of (rare) random
reaction events.

Note that in this simple example, if the simulation is run for long enough
(several time units), eventually both irrRAFs will come into existence and then
co-exist “forever”. This is due to the fact that they do not compete for the same
resources (food molecules). IrrRAF R0 only requires the monomer 0, and irrRAF
R1 only monomer 1. So, on shorter time scales there can be four different outcomes,
but on longer time scales there really is only one “attractor”.

3.5 Extended results

To provide an example with more than one long-term attractor, consider the ad-
ditional catalysts 010 and 101, where 010 catalyzes reaction category R2 and 101
catalyzes reaction category R3. So, we use the same CRS as before, but with the
extended catalysis set

C = {(000, r)|r ∈ R1} ∪ {(010, r)|r ∈ R2} ∪ {(101, r)|r ∈ R3} ∪ {(111, r)|r ∈ R4}.

Note that in Fig. 1 this would mean adding six additional catalysis (dashed) ar-
rows. For this CRS, the entire reaction network becomes a maxRAF, and there is
one additional irrRAF to make a total of three: R0 and R1 as before, plus

R01 = {0 + 1→ 01, 1 + 0→ 10, 01 + 0→ 010, 10 + 1→ 101}.

In this slightly extended example, there are two distinct long-term attractors:
(1) co-existence of R0 and R1, as illustrated in Fig. 2 (bottom), and (2) existence
of R01 only, illustrated in Fig. 3 (top). Which of these two attractors is reached
depends again on (rare) stochastic reaction events, but they are mutually exclusive
due to competition for the same resources (food molecules). In other words, once
one of these two attractors is reached, it “uses up” the available food molecules
and intermediate products (dimers) at such a high rate, that the other attractor
cannot get a foothold anymore to also come into existence.

On short time scales, however, there can still be any combination of the three
irrRAFs. But there is an additional short-term dynamic as well. If only one of R0

or R1 exists (i.e., before they have both come into existence and reached the first
stable attractor), it can be “taken over” by the appearance of R01, illustrated in
Fig. 3 (bottom). Once R01 comes into existence, it “outcompetes” R0, which will
eventually disappear (this simulation is run for 2 time units to clearly show this
effect).

4 A more general example

The examples above are carefully constructed by hand to clearly show how the nec-
essary conditions for evolvability are satisfied in a simple binary polymer model.
However, an obvious question is how many (different) irrRAFs and possible at-
tractors can be expected to exist for a given (arbitrary) reaction network. This
would give an indication of the possible “diversity” one can expect to see.
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Fig. 3 Two new possible simulation results with the extended example CRS. Top: only R01

exists. Bottom: R0 comes into existence first, but is then outcompeted by R01.

In [14] we showed that, in principle, the number of irrRAFs within a given
(max)RAF can grow exponentially with the size of the RAF, so in general it is not
possible to efficiently enumerate all of them. However, using an extension of the
basic RAF algorithm, it is possible to randomly sample irrRAFs within a given
RAF set [28]. Using such a sampling method, and a standard statistical test, we
have shown elsewhere that also in practice there seem to be very large numbers of
irrRAFs (possibly even hundreds of thousands) in random instances of a different,
but related, binary polymer model [10]. With this many irrRAFs in one single
reaction network there is obviously a certain amount of overlap between them,
but on average about half of the reactions between an arbitrary pair of irrRAFs
is different (in moderate-sized networks and at a level of catalysis where RAFs
are likely to exist). In other words, a large number, and significant diversity, of
irrRAFs can be expected in (random) reaction networks.
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So, the next question is whether this large diversity of irrRAFs can indeed give
rise to different dynamical behaviors and attractors. A full investigation of this is
beyond the scope of the current paper (where the focus is mostly on the formal
principles behind evolvability of autocatalytic sets), but the following analysis of
one particular example suggests that this question can most likely be answered
positively.

4.1 The CRS

In previous work we have often used a well-known binary polymer model related
to the Wills-Henderson model, but which allows a more general set of polymer
reactions and catalysis assignments. In this more general model, introduced by
Kauffman [17,18], molecules are also represented by bit strings up to a given
maximum length n. The food set consists of all bit string up to a given small length
t < n. The possible reactions are ligation, in which two bit strings are concatenated
into a longer one (taking the maximum bit string constraint into account), and
cleavage, where a bit string is split into two smaller ones. Finally, catalysts (bit
strings) are assigned to reactions (ligations and cleavages) at random according
to a probability of catalysis p, which is the probability that a given bit string x

catalyzes a given reaction r (or, in other words, that a given molecule-reaction
pair (x, r) will be included in the catalysis set C).

We have taken a random instance of this binary polymer model with n = 6,
t = 2, and p = 0.003, on which we applied the RAF algorithm and irrRAF sampling
method.

4.2 RAF sets

The particular model instance used here consists of 1032 reactions, and contains
a maxRAF of 288 reactions (i.e., 144 ligation reactions and their corresponding
(reverse) cleavage reactions). Figure 4 shows a histogram of the sizes of irrRAFs
within this maxRAF from a random sample of S = 500 irrRAFs. These sizes range
from 26 to 79 reactions, with an average of 50.

It turns out that all these S = 500 irrRAFs are different, even though some of
them are of the same size. There is an average overlap of O = 0.32, which means
that, on average, an arbitrary irrRAF shares about one third of its reactions with
another arbitrary irrRAF from the sample [10]. Repeating this sampling method,
again with S = 500, results in 500 different irrRAF almost every time. Only
occasionally will there exists a pair of equal irrRAFs within the random sample.

This means that we can expect, with high probability, at least 5002

10 = 25, 000
irrRAFs to exist within the given maxRAF [10].

4.3 Simulation results

Next, we applied the Gillespie algorithm to the reaction network as defined by
the maxRAF in the given model instance. As in the previous examples, catalyzed
reactions have a kinetic constant of kc = 1.0, but with a possibility of these same
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Fig. 4 A histogram of the sizes of S = 500 randomly sampled irrRAFs within the maxRAF
in the used binary polymer model instance with maximum molecule length n = 6.

reactions happening spontaneously (uncatalyzed) with a kinetic constant of ks =
0.3. Each simulation starts with a concentration of 10 of each of the six food
molecule types (i.e., all bit strings up to length t = 2), which are continuously
replenished whenever they are consumed in any reaction, as before. In this example
there is no outflow of molecules, and the total volume (one) remains constant. The
simulation is then run for a total of two time units.

Figure 5 shows the result of 10 different simulation runs. In this figure, the
relative concentrations of maximum-length molecules (i.e., bit strings of length
n = 6) after two time units are shown for each simulation. The molecule concen-
trations are normalized by the largest concentration in each run. In other words,
the molecule type that is present in the largest amount (at the end of a given
simulation) has a relative concentration of 1.0, a molecule type that is present
in only half that amount has a relative concentration of 0.5, and molecule types
that are not present at all have a relative concentration of 0.0. These relative
concentrations are represented by a grey-scale (white is 0.0 and black is 1.0).

As figure 5 shows, different simulations can have different outcomes in terms
of the most dominant molecule types. For example, in simulation runs 1 and 6,
molecule types 001000 and 101001 are produced in the highest quantities (darkest
dots), while the others exist in relatively low concentrations. In simulation run 3,
molecule type 101101 is clearly dominant, while the others exist in much lower
concentrations (including 001000 and 101001, which were dominant in runs 1 and
6). In run 7, molecule types 101101, 101110, 111101, and 111110 are by far the
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Fig. 5 Ten different simulation results, showing the distribution of relative concentrations
(as a grey-scale) of maximum length (n = 6) molecules after two time units. Only the most
dominant molecule types are labeled, but they are ordered lexicographically, with 000000 at
the bottom and 111111 at the top.

dominant types, whereas most other runs mostly produced some subset of these
four types.

Of course this is only a very rough representation, but it does illustrate the
possibility for different dynamical behaviors. We actually performed more than 10
simulation runs, many of which show similar outcomes, but figure 5 shows at least
some of the more dissimilar ones. There are clearly not as many “attractors” as
there are irrRAFs in this example, due to the partial overlap between the irrRAFs,
and probably also due to a different number of spontaneous reactions required to
allow these irrRAFs to come into existence (i.e., some of them are more likely to
exist than others). However, there does appear to be significant variability in the
dynamical behavior of the system over different runs, indicating that the results
from the previous (more artificial) examples can be generalized.

5 Discussion

The above examples serve as a formal and visually clear illustration of how the
necessary conditions for evolvability of autocatalytic sets, as stated in [31], are
satisfied in simple polymer-type models of a chemical reaction system, and how
they can be captured and analyzed with RAF theory. This allows for drawing
more general conclusions about the possible evolvability of autocatalytic sets, also
based on earlier results from RAF theory, as discussed next.
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5.1 Compartments

The first condition for evolvability of autocatalytic sets is the availability of com-
partments. In our simple example, a “compartment” is simulated by having an
inflow of food molecules (i.e., a constant concentration of monomers) and a con-
tinuous outflow of trimers from the system. The notion of a compartment, or more
generally that of a boundary, is actually not explicitly included in the RAF for-
malism. However, we recently showed how this notion can be included implicitly
(by considering the boundary as another “catalyst” for the reactions that happen
within its enclosure), and how this gives rise to a mechanism for the emergence
of “higher-level” RAF sets, i.e., a RAF (super)set of RAF (sub)sets [13]. This ac-
tually provides another mechanism for evolvability of autocatalytic sets, through
the emergence of higher-level structures and functionality (which, as mentioned in
the introduction, is most likely required for true open-ended evolution).

However, one element of the first condition as stated in the introduction, that
of growth and division of compartments, is not included in our examples. Yet
it seems that the basic requirements for evolvability are met (due to a different
possible mechanism for loss of viable cores; see the further discussion below). This
would imply that an even simpler set of necessary conditions can be formulated
for the evolvability of autocatalytic sets.

The issue of compartmentalization is a general problem in the origin of life,
regardless of whether one considers a metabolism-first or a genetics-first scenario.
However, there appear to be possible solutions to this problem, e.g., the spon-
taneous formation, growth, and division of lipid layers [23]. Furthermore, there
are also plausible origin of life scenarios that do not require the formation of an
explicit boundary, at least not initially [20,33].

5.2 Multiple irrRAFs

The second condition is the existence of multiple viable cores, or irreducible RAF
sets, that can exist in various combinations within a compartment. Our simple
but formal example clearly illustrates the basic principles of this condition. On
short time scales, there can be various combinations of the three possible irrRAFs
within a compartment, and on longer time scales there are two stable attractors.
Using the RAF algorithm, we can detect the possible irrRAFs that exist in a given
reaction network (at a static level), and with dynamical simulations we can see
which ones actually come into existence, and in which combinations.

In principle the number of irrRAFs within a given (max)RAF can grow expo-
nentially with the size of the RAF [14]. Here, and in related work [10], we have
shown that also in practice there are large numbers of irrRAFs (possibly tens
or even hundreds of thousands) in random instances of a simple binary polymer
model. The example provided here gives a first indication that this can indeed give
rise to different “attractors” (although the number of attractors is not necessarily
of the same order as the number of irrRAFs).
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5.3 Spontaneous gain or loss

The third condition is a mechanism for spontaneous gain or loss of viable cores,
or irrRAFs. As was already shown in [31], viable cores can come into existence
through rare spontaneous reactions that produce a required “seed” molecule. In-
deed, as illustrated in our simple example, irrRAFs generally require one or more
of their reactions to happen spontaneously (uncatalyzed) at least once before the
full set can come into existence (in a dynamical sense). Due to the stochastic na-
ture of these rare events, different simulations have different outcomes, even when
starting from the same initial conditions. So, this need for one or more (initially)
uncatalyzed reactions actually satisfies part of the third condition (spontaneous
gain of viable cores). However, in general it is a difficult (NP-complete) problem
to determine the smallest number of uncatalyzed reactions required to make an
arbitrary (sub)RAF come into existence [15].

This is in sharp contrast to so-called “constructible” autocatalytic sets (CAFs)
[21]. A CAF is an RAF that is immediately constructible from the food set without
the need for any (initially) uncatalyzed reactions. This may sound like a desirable
property, but there are two important reasons why this is not the case.

First, CAFs are much less likely to exist in (arbitrary) reaction networks than
RAFs. Indeed, they require an exponential growth rate in the level of catalysis
with increasing system sizes [21], whereas RAFs only require a linear growth rate
in the level of catalysis [11,21]. Intuitively, this can be seen as follows. Given a
number of available catalysts and reactions that need to be catalyzed, for an RAF
to exist these catalysts can be assigned to the given reactions in any random order.
However, there are only very few of those (random) assignments that will give rise
to a CAF. As a consequence, with increasing system sizes, CAFs are exponentially
less likely to exist than RAFs.

Second, CAFs do not provide the desired diversity and possibility for spon-
taneous gain of viable cores as required by the third condition for evolvability of
autocatalytic sets. This is because in any given CAF there can be only a small
number of irreducible CAFs (and this number does not increase with increasing
system size), and they will always (by definition) be of size one. Thus, in the con-
text of the origin and early evolution of life, RAFs are of much more interest than
CAFs.

In [31], the mechanism given for spontaneous loss of viable cores is through
compartment division with an unequal distribution of molecules between the off-
spring compartments. In our simple example, compartment growth and division is
not simulated, so this mechanism does not occur here. However, an alternative (and
perhaps more plausible) mechanism for the loss of irrRAFs is clearly illustrated
in Fig. 3 (bottom). An irrRAF can be lost because it is out-competed by another
irrRAF that has (spontaneously) come into existence later on. When irrRAFs do
not compete for the same resources, they can co-exist inside a compartment, as in
Fig. 2 (bottom). However, when they compete for the same resources, it is likely
that one of them will eventually outcompete the other and make it disappear.

A third possible mechanism for spontaneous loss of viable cores could be in-
hibition. For example, if one of the molecules in a newly formed irrRAF actually
inhibits one or more reactions in another irrRAF, this other irrRAF may be lost.
Inhibition is currently not explicitly included in the RAF formalism. In fact, it is
known that including inhibition makes the problem of finding RAF sets in arbi-
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trary reaction networks NP-complete [21]. However, recent work shows that if the
total number of inhibitors is limited, the problem can still be tractable, and that
RAF sets still exist with a significant probability [10] (see also [31]). Further work
on RAF theory with inhibition included is currently in progress.

6 Conclusions

We have provided a formal but visually clear example of how a set of minimal
necessary conditions for evolvability of autocatalytic sets is satisfied in a simple
polymer model of a chemical reaction system. Furthermore, we have shown how
these conditions can be captured and analyzed within RAF theory. Moreover, given
the results of our more general example, combined with previous results, one of
these conditions (existence of multiple viable cores, or irrRAFs) is an expected

property of a (random) reaction network once a certain average level of catalysis
is reached. Other conditions (mechanisms for spontaneous gain or loss of viable
cores) are also clearly satisfied, or can be incorporated within RAF theory (such
as boundaries). These results clearly support the hypothesis that autocatalytic
sets can be evolvable. Additional mechanisms that can provide regulation and
evolvability, such as inhibition and the emergence of higher-level structures, can
also be included in RAF theory, and are a topic of ongoing work.
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