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Abstract

Traditional computing methods and systems rely on a central processing unit or central server,
and process information mostly serially. They are non-robust and non-adaptive, and have limited
scalability. In contrast, biological systems process information in a parallel and distributed way,
without a central control. They are highly robust, adaptive, and scalable. This paper gives a brief
overview of  how ideas from biology  have been used  to  design  new computing methods  and
systems that also have some of the advantageous properties of biological systems. In addition,
some examples are given of how these methods can be used in information security applications.

1. Introduction

The power and popularity of current computing systems is largely due to faster and faster CPUs
and more and more memory availability at  low cost.  However, these “traditional” computing
methods,  architectures,  systems,  and  networks  mostly  rely  on  a  central  processing  unit  or  a
central server, they process information serially, and they depend on humans to be programmed
and told what to do (and how). This has some serious drawbacks. First, the systems are not very
robust. If one part of a system breaks down, the entire system is useless. Second, they are not
adaptive. Most computing systems do not learn (or have only limited learning capability), and
cannot adjust or adapt to new or unexpected situations without human intervention. Third, there is
only limited scalability. The larger the  system becomes,  or  the  more nodes are  added to the
network,  the higher the  workload of  the central  processor or  server  becomes,  until  it  cannot
process all instructions or service requests in a reasonable time anymore.

In contrast, most biological systems process information in a parallel and distributed way, without
the existence of a central control. They usually consist of a large number of relatively simple
individual units, which act in parallel and interact only locally. For example, the brain consists of
a large number of simple neurons (more or less equivalent to on-off switches), each of which is
connected only to a relatively small portion of all other neurons. Yet an enormous amount of
information processing is going on in the brain, where each neuron performs only part of the
processing, but they all do so in parallel. In social insect colonies, such as ants and bees, a large
number of relatively simple individuals manage to build intricate nests or find the shortest path
between the nest and a food source, again in a parallel and distributed way. The human immune
systems is another example, where (simple) individual immune cells perform only part of the
complete task, but there are many of them working together in parallel.

This  parallel  and  distributed  processing  method makes  these  systems highly  robust.  If  some
individual units in the system break down, the system as a whole will still function. In fact, it is
easy  to  repair  or  replace  broken  units  without  having  to  “shut  down”  the  entire  system.



Furthermore, these systems are highly scalable. As many individual units can be added as desired,
since there are only local interactions involved, and there will be no overload on one particular
part  of  the  system.  Finally, most  systems in  nature  are  adaptive,  either  through learning  (in
individual  organisms) or through evolution (at  the level  of  populations or species).  They can
adjust  to  changing situations  or  even cope  with  entirely  new situations.  So,  there  are  many
advantages in biological systems that would be desirable to have in our computing systems.

In this paper, a brief overview is given of how ideas from biology have been used to design new
computing methods. This is generally referred to as  biologically inspired computing [1]. These
methods  overcome  some  of  the  disadvantages  of  traditional  computing,  making  them  more
robust, adaptive, and scalable. In particular, three examples are reviewed: (1) genetic algorithms,
(2)  neural  networks,  and (3)  artificial  immune systems.  Furthermore,  for  each of  these three
methods,  some  actual  applications  in  the  area  of  information  security  are  also  described,  in
particular  in  cryptography,  biometrics  for  security,  and  computer  and  network  security.  The
biological concepts and ideas underlying the methods described here can be found in any standard
textbook on biology, such as [2] and [3].

2. Genetic Algorithms in Cryptography

Genetic algorithms were developed in the 60s and 70s by John Holland and his colleagues and
students.  They  were  used  both  as  simple  models  of  evolution  and  adaptation,  and  as  new
computer algorithms to find good solutions to difficult optimization problems. Subsequently, they
became very popular as a general optimization tool, and they have been applied successfully to a
wide range of problems. This section gives a brief overview of the algorithm (more details can be
found  in  [4],  [5],  [6],  and  [7]),  and  some  specific  applications  of  genetic  algorithms  in
cryptography and coding are described.

2.1 Genetic Algorithms

A genetic algorithm (GA) is a stochastic search method based on principles from genetics and
natural evolution and selection. It is one of a number of computational methods generally referred
to as evolutionary computation (EC). Instead of trying to directly solve a problem, a solution is
evolved over time by maintaining a population of (initially random) candidate solutions, creating
subsequent  generations  by  recombining  different  parts  of  the  current  best  solutions  in  the
population. This way, new candidate solutions are sampled based on the current sample, where
the search is  guided by a selection process which favors the (currently) best  solutions in the
population to use for creating new (“offspring”) solutions.

Given some optimization problem, first a suitable encoding for candidate solutions needs to be
found. Usually, this encoding takes the form of character strings such as bit strings (i.e., strings of
0s and 1s).  This is  analogous to the biological  distinction between the  genotype (the genetic
encoding) and the phenotype (the actual shape and appearance) of an organism. For example, in
graph problems where some optimal subset or partition of the nodes needs to be found (such as a
minimum cover or maximum cut set), a bit string encoding can be used where each bit position
corresponds to one particular node in the graph. Construction of the actual candidate solution
(phenotype) from a given bit string (genotype) is done as follows. For each bit with value 1, the
corresponding node in the graph is included in the candidate subset (or put on one side of the
candidate partition), and for each bit with value 0, the corresponding node is not included in the
subset (or put on the other side of the partition). This way, the GA can directly search the (much
simpler) space of bit strings instead of the space of actual candidate solutions, just as natural
evolution happens at the level of genotypes.



Next, a fitness function needs to be designed which can be used to evaluate candidate solutions.
The main idea is that this function takes as its input an encoded candidate solution (e.g., a bit
string), translates this into an actual candidate solution (e.g., a partition of the nodes of a graph),
and returns a number according to how good this candidate solution is for the given problem
(e.g.,  the  total  number  of  edges  between  nodes  from different  sides  of  the  partition  for  the
maximum cut problem). This number, or fitness value, indicates the “goodness” of a candidate
solution: higher fitness values mean better solutions. This way, the GA can perform selection
based on these fitness values, just as natural selection happens at the level of the phenotypes.

Given a suitable encoding and fitness function (which have to be designed separately for each
optimization problem that is considered), the actual algorithm is relatively simple. Assuming a bit
string encoding is used, the basic GA works as follows (the selection and crossover & mutation
operators are explained below):

1. Initialize the population with N random bit strings 
(“individuals”), calculate their fitness values, and set gen=1.

2. Create a “mating pool” by selecting (with replacement) N 
individuals from the current population based on fitness.

3. While still individuals in the mating pool, do:
a. Remove the next pair of individuals (“parents”) from the 

mating pool.
b. With probability cp  perform crossover between the parents 

to create two “children”.
c. With probability mp  perform mutation on the children.
d. Place the children in the new population.

4. Replace the previous population with the new population, calculate
the fitness of all individuals, and set gen=gen+1.

5. If gen < M go to step 2, otherwise stop.

There are various ways in which the selection operator can be implemented, but the main idea is
that individuals with higher fitness values, compared to the rest of the population, have a higher
chance of being selected than individuals with lower fitness values (i.e.,  fitness proportionate
selection). In other words, the mating pool will (on average) contain multiple copies of the best
individuals in the current population and no (or just a few) copies of the worst individuals.

The crossover operator literally chops up the genotypes of the parent individuals and recombines
them to create offspring genotypes. The most basic method is one-point crossover, in which a
random crossover point is first chosen (somewhere between the first and last bit), and the first
part of the first parent is recombined with the second part of the second parent to create the first
child (and vice versa for the second child). Usually crossover is done with a certain probability

cp  (often set in the range [0.6;0.95]) for each pair of parents. If crossover is not performed, the

children will  be  identical  to  their  parents.  Finally, with a  usually  very low probability  mp ,
mutation is performed, where a bit is flipped at random. Examples of (one-point) crossover and
mutation are shown below. In the crossover example, the crossover point is (randomly) chosen
between the 3rd and 4th bit. In the mutation example, the 0 at the 9th position is mutated into a 1
(shown in bold).

             crossover                        mutation

     0000000000    0001111111       0101010101    010101111
     1111111111      1110000000



Finally, the creation of new generations  of candidate  solutions by selection and crossover  &
mutation is repeated for a set number  M of generations. Other stopping criteria are possible, of
course, such as reaching a certain level of fitness or a maximum amount of computing time. In
short,  the  main  idea  of  the  algorithm is  to  evolve  better  and  better  solutions  by  repeatedly
selecting the best candidate solutions from the current population and recombining parts of their
genotypes to create subsequent generations of candidate solutions.

2.2 Applications of Genetic Algorithms in Cryptography and Coding

A concise  overview of  the  state  of  the  art  and of  still  open problems in  using evolutionary
computation  techniques  (such  as  genetic  algorithms)  in  cryptography  is  given  in  [8].  In
cryptography,  it  is  important  to  know  how difficult  it  is  to  “break”  an  encryption  method.
Obviously, methods that are very difficult  to break are preferred over methods that are more
easily broken.  Cryptanalysis is all about analyzing (or “attacking”) encryption methods to find
out how easy or difficult they are to break. Genetic algorithms have been used successfully in this
area,  for  example  in  attacking  substitution  ciphers  [9],  [10]  and  transposition  ciphers  [11].
Although this does not directly give rise to better ciphers, it does show where their weaknesses
are, which in turn can help in improving them. Furthermore, in [12] a genetic algorithm was used
successfully to find Boolean functions with good cryptographic properties,  thus showing how
these techniques can also be used directly for constructing encryption methods.

An important method that is often used in cryptography is that of generating pseudo random
numbers. Here, the objective is to generate a stream of numbers (by some deterministic method)
that is “as random as possible”, and which has a high period (i.e., it will not repeat itself quickly).
An interesting approach, using an evolutionary technique similar to GAs, was introduced in [13],
where cellular  automata  (simple  parallel  and distributed computing devices)  were evolved to
produce pseudo random numbers with a high degree of randomness.

As a final example, consider coding techniques for data transmission. Next to providing data
security  through  encryption,  it  is  also  important  that  information  loss  is  minimized  during
transmission of encrypted messages. Genetic algorithms have been used successfully to optimize
so-called “turbo codes” [14]. In this case, the GA was able to find a slightly better code than what
was available at the time.

These applications are just a selection of the many possibilities of applying genetic algorithms
and  other  evolutionary  computation  techniques  in  the  area  of  information  security. Next,  an
overview of neural networks, another biologically inspired computing method, is presented.

3. Neural Networks in Biometrics for Security

The research on neural  networks was pioneered by McCulloch and Pitts  in  1943 [15].  They
presented  a  logical  (mathematical)  model  of  a  simple  neuron,  and  showed  that  a  suitably
constructed  network  of  such  “artificial  neurons”  can,  in  principle,  compute  any  computable
function. Thus, a neural network is equivalent (in terms of computational power) to a universal
Turing machine, but with a very different architecture. In this section, first the concept of neural
networks is briefly reviewed. A good introduction to computing with neural networks is provided
in [16], and more detailed information can be found in any standard textbook on neural networks,
such as [17] and [18]. Next, an example of an application of neural networks in biometrics for
security is described.



3.1 Neural Networks

A neural network (NN) is a  parallel distributed processing (PDP) architecture that is modeled
after the working of the brain. It can perform computations, in particular classification of inputs,
and provides an example of an alternative model of computation compared to the serially and
centrally based computations of standard computing systems.

Our brains consist of many (about 10 billion) simple cells called neurons. Each neuron consists of
a cell body, an axon (an elongated “transmission line” through which chemical signals can travel),
and many dendrites (a tree-like structure of many branching “tentacles”), which end in synapses
which form connections with the axons of other neurons. Simply put, each neuron receives inputs
(the presence or absence of signals) from other neurons through the synaptic connections, which
travel  down the dendrites to the cell  body. Here,  the inputs are “added up”,  and if  a certain
threshold is reached the neuron sends out a signal itself through its axon, which is then forming
an  input  to  yet  other  neurons  which  are  connected  to  its  axon.  However,  not  all  synaptic
connections are equal. Some are stronger than others, and so some inputs have a higher “weight”
than  others.  Learning  is  achieved  by  adjusting  the  strengths  (weights)  of  existing  synaptic
connections, or by creating new or deleting old connections.

A simplified model of a real neuron is illustrated in the figure below. A neuron receives inputs (

ix ) from other neurons, which are weighted ( iw ) and then added ( y ). The output of a neuron
is a function  )(yf of this weighted sum of  inputs,  and can in turn form the input  to  other
neurons. In the simplest case, each input can be either 0 (absence of signal) or 1 (presence of
signal), and the output function is a step function such that the output is 0 if the weighted sum of
inputs is below a certain threshold value, and 1 if it is above the threshold value. In more realistic
cases, the inputs and outputs are real valued numbers within some range, and the output function
is for example a sigmoidal shape.
 

Any number of such neurons can be connected to each other to form an artificial neural network.
A standard network architecture that is often used is a feed forward network. In such a NN, there
is one layer of input neurons, one or more layers of “hidden” neurons, and one layer of output
neurons, as illustrated in the figure on the next page. The neurons in the input layer are initialized
with some input pattern, and the outputs from this layer go “forward” and serve as inputs to the
first hidden layer. These neurons then produce their outputs which serve as inputs to the next
hidden layer (if present), until the final, or output, layer is reached. The state of the neurons in the
output layer can then be interpreted as the “answer”. For example, in classification problems, if
the state of the first output neuron is 1 and that of the second one is 0, the input belongs to one



class. If their final states are reversed (i.e., 0 and 1, respectively), then the input belongs to the
other class (assuming there are two classes into which to partition the inputs).  Other network
architectures are of course also possible, such as recurrent networks, where connections can feed
back to previous layers as well, or grid networks, where the neurons are arranged in a grid with
connections between neighboring neurons.

Given  some  network  architecture,  it  is  not  directly  obvious  how to  set  the  weights  on  the
connections to get a certain network behavior. However, several  training algorithms have been
designed to optimize these weights. The main idea of these algorithms is to repeatedly present the
network with example inputs for which the correct answer is known. The weights in the network
are then updated depending on the amount of error between the correct answer and that given by
the network. This is repeated until no more errors are made, or the amount of error falls below a
certain threshold. The network can now be said to have learned the given task. At the next stage,
the network can be used to perform the task on new inputs which it might not have seen before.

3.2 Applications of Neural Networks in Fingerprint Recognition

One area where neural networks have become very popular is image processing, such as pattern
recognition and classification, noise filtering, edge detection, etc. As an application in biometrics
for security, they can be used successfully for fingerprint recognition. Fingerprint recognition is
often split up in two stages: (1) feature extraction, and (2) classification. In the first stage, certain
features from a fingerprint image are extracted, such as ridge directions, arches and whorls, delta
points,  etc.  (for  a more detailed overview, see  for  example [19]).  In  the  second stage,  these
features are used to recognize (or classify) the given fingerprint image.

Neural networks have been applied successfully in both of these stages, often giving rise to high
correct  classification  rates  and  low false  rejection  rates,  and  frequently  outperforming  more
traditional  methods  (see  for  example  [20],  [21],  [22],  [23],  and  [24]).  Furthermore,  neural
networks can be used similarly for other image recognition tasks in biometrics security, such as
retina or iris scan classifications, or for voice recognition.

Finally, as a last example of biologically inspired computing in the area of information security, a
brief overview of artificial immune systems for computer security is presented in the next section.



4. Artificial Immune Systems for Computer Security

A very recent idea that is still being developed is that of building a computer immune system. The
task of such a system is to provide computer and network security based on the workings of the
human  immune  system.  This  section  first  presents  a  high-level  and  somewhat  simplified
overview of the human immune system. A good introduction to this topic can be found in [25].
Next,  an  example  of  an  implementation  of  a  simple  computer  immune  system  is  given  to
illustrate the applicability of the idea.

4.1 The human Immune System

The human immune system is a complex and multi-layered system. The part  that  is  of  most
interest here is the adaptive immune response. A brief overview of this is given below, with many
details left out. However, the general properties of this part of the immune system serve as a
starting point for the design of an artificial immune systems for computer and network security.

The human body consists  of  many different  types  of  molecules  (mostly proteins),  which are
referred to as “self”. Everything else, including things that make us ill, is referred to as “non-
self”. So, the main task of the immune system is to distinguish “non-self” from “self”, and trigger
a response whenever “non-self” proteins are detected. However, this is not an easy task as there
are  an  estimated  1610  “non-self”  proteins  that  the  immune  systems  needs  to  recognize,
compared to about 510  “self” proteins. The way the immune system solves this problem is by
using a dynamic and distributed system.

At  any time,  many “detector” cells,  including so-called T-cells,  circulate through our bodies.
These cells mature in an organ called the thymus, where they are exposed to most of the “self”
proteins that make up our bodies. If any of the maturing T-cells binds to any of these “self”
proteins, that T-cell is eliminated. So, the only T-cells that leave the thymus are those that do not
bind to “self” proteins. Consequently, if a matured T-cell does bind to a protein, it means this
must be a “non-self” protein, and an appropriate immune response will be triggered. However,
not all T-cells are able to bind to (or “recognize”) all possible “non-self” proteins, but some T-
cells bind to some “non-self” proteins, other T-cells to others, etc. In this way, the immune system
is a distributed system.

It  is  also  dynamic,  as  T-cells  are  continuously  replaced  through a  genetic  process  including
variation (or  random “mutations”).  This  way, the  set  of  “non-self”  proteins  that  the  immune
system is able to recognize, changes over time. Since it is impossible to recognize all possible
“non-self” proteins at any one time, this dynamic system is the next best solution. Furthermore,
because of this, no two individuals will have exactly the same set of T-cells at any given time, so
what might make me sick, my neighbor might be immune to, and vice versa.

Finally, the immune system also has a “memory”. It is capable of remembering illness-causing
“non-self” proteins (antigens), so that the next time an individual gets infected with the same
antigen,  it  is  recognized  immediately and an  appropriate  immune response can be  triggered,
preventing the actual illness from occurring again.



4.2 Computer Immunology

Forrest and students were some of the originators of using principles from the human immune
systems  to  design  an  intrusion  detection  system  for  computers  and  networks  [26],  [27].  In
particular,  in  [28]  they  show the  results  of  a  basic  implementation  based  on  scanning  short
sequences of system calls. Briefly, the idea is as follows. In the first stage, a database of system
call sequences during “normal” behavior is built. This database thus contains the sequences that
constitute “self”. In the next stage, system call sequences are scanned during system operation
that  might  contain  intrusion  attempts.  These  sequences  are  then  compared  to  the  available
database, and any sequence that is not present in the database (“non-self”) triggers an “alarm”.
This way, abnormal behavior can be easily detected, and appropriate actions can be performed if
necessary.

Obviously, the databases containing normal behavior have to be updated frequently. For example,
adding new users or software and hardware to the system will change the normal behavior, or a
user’s behavior might change over time (different tasks, different priorities, etc.). However, with
this design, the intrusion detection system becomes more adaptive, as it is capable of recognizing
abnormal behavior that has not been observed before. In other words, the system can identify, for
example, new viruses or new attacking mechanisms, without the need for downloading new virus
“signatures” from some central server first. Furthermore, different computers will have different
databases of “self” behavior, so a virus that infects one computer, might not be able to infect
every other computer. This way, the network as a whole also has a better (distributed) protection.

The  (small-scale)  examples  and  simulation  that  have  been  implemented  so  far  indicate  the
viability of these ideas, and show a promising future. Currently, the ideas and designs are still
being  developed  further,  and  are  also  being  picked  up  by  others  [29],  [30].  Computer
immunology and artificial immune systems are now an active area of research.

5. Summary

Traditional  computing methods have several  disadvantages,  such as  a lack of robustness and
adaptability,  and  limited  scalability.  In  contrast,  biological  systems,  being  mostly  parallel
distributed processing systems, are highly robust, adaptable, and scalable. Biologically inspired
computing involves the design, implementation, and application of new computer methods and
systems that incorporate these advantageous properties of biological systems. In this paper, a brief
overview of biologically inspired computing has been presented, with some specific examples of
how these methods can be used in information security in particular. Many of these methods have
already been applied successfully, such as genetic algorithms and neural networks, and some are
still  being  further  developed,  such  as  computer  immunology.  It  is  clear  that  the  area  of
information security can benefit greatly from these new and exciting computing methods.

Acknowledgements

The author would like to thank Dr. K. Anbumani for the invitation to contribute a paper to this
conference, and the Karunya Institute of Technology and Sciences for providing an enjoyable
working environment.



References

[1]  L.  N.  de  Castro  and  F.  J.  Von  Zuben,  Recent  Developments  in  Biologically  Inspired
Computing. Idea Group Publishing, 2005.

[2] S. Alters, Biology: Understanding Life. Mosby, 1996.

[3] N.  A.  Campbell,  L.  G. Mitchell,  and J.  B.  Reece,  Biology: Concepts & Connections,  2nd

edition. Benjamin Cummings, 1997.

[4] J. H. Holland,  Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

[5] J. H. Holland, “Genetic Algorithms,” Scientific American, vol. 267 (1), pp. 66-72, 1992.

[6]  D.  E.  Goldberg,  Genetic  Algorithms  in  Search,  Optimization,  and  Machine  Learning,
Addison-Wesley, 1989.

[7] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1996.

[8] P. Isasi and J. C. Hernández, “Introduction to the applications of evolutionary computation in
computer security and cryptography,” Computational Intelligence, vol. 20 (3), pp. 445-449, 2004.

[9] R.  Spillman,  M.  Janssen,  B.  Nelson,  and M. Kepner, “Use of  a genetic algorithm in the
cryptanalysis of simple substitution ciphers,” Cryptologica, vol. 17 (1), pp. 31-44, 1993.

[10] A. Clark and E. Dawson, “Optimisation heuristic for the automated cryptanalysis of classical
ciphers,” Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 28, pp. 63-
86, 1998.

[11] R. A. J. Matthews, “The use of genetic algorithms in cryptanalysis,” Cryptologica, vol. 17
(2), pp. 187-201, 1993.

[12] W. Millan, A. Clark, and E. Dawson, “An effective genetic algorithm for finding Boolean
functions,” in Proceedings of the International Conference on Information and Communications
Security, 1997.

[13]  M.  Sipper  and  M.  Tomassini,  “Co-evolving  parallel  random  number  generators,”  in
Proceedings of the Parallel Problem Solving from Nature Conference, 1996, pp. 950-959.

[14]  N.  Durand,  J.-M.  Alliot,  and  B.  Bartolomé,  “Turbo  codes  optimization  using  genetic
algorithms,” in Proceedings of the Congress on Evolutionary Computation, 1999.

[15]  W. S.  McCulloch  and  W. Pitts,  “A logical  calculus  of  the  ideas  immanent  in  nervous
activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[16] R. P. Lippmann, “An introduction to computing with neural nets,”  IEEE ASSP Magazine,
vol. 4, pp. 4-22, 1987.

[17] J. A. Anderson, Introduction to Neural Networks. MIT Press, 1995.



[18] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice-Hall, 1999.

[19] N. Ratha and R. Bolle, Eds.,  Automatic Fingerprint Recognition Systems. Springer-Verlag,
2004.

[20] P. A. Hughes and A. D. P. Green, “The use of neural network for fingerprint classification,”
in Proceedings of the 2nd International Conference on Neural Networks, 1991, pp. 79-81.

[21]  M.  Kamijo,  “Classifying  fingerprint  images  using  neural  networks:  Deriving  the
classification state,”  in  Proceedings  of  the  3rd International  Conference on  Neural  Networks,
1993, pp. 1932-1937.

[22] C. L. Wilson, G. T. Candela, and C. I. Watson, “Neural network fingerprint classification,”
Journal of Artificial Neural Networks, vol. 1 (2), pp. 203-228, 1994.

[23]  H.  V.  Neto  and  D.  L.  Borges,  “Fingerprint  classification  with  neural  networks,”  in
Proceedings of the 4th Brazilian Symposium on Neural Networks, 1997, pp. 66-72.

[24] A Ceguerra and I. Koprinska, “Automatic fingerprint verification using neural networks,” in
Proceedings of the International Conference on Artificial Neural Networks, 2002, pp. 1281-1286.

[25] C. A. Janeway and P. Travers, Immunobiology: The Immune System in Health and Disease.
Current Biology Ltd., 2nd edition, 1996.

[26] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer Immunology,” Communications of
the ACM, vol. 40 (10), pp. 88-96, 1997.

[27] A. Somayaji, S. A. Hofmeyr, and S. Forrest, “Principles of a computer immune system,” in
New Security Paradigms Workshop, 1998, pp. 75-82.

[28] S.  Forrest,  S.  A. Hofmeyr, A. Somayaji,  and T. A. Longstaff,  “A sense of self  for Unix
processes,” in Proceedings of the IEEE Symposium on Computer Security and Privacy, 1996.

[29] J. Kim and P. Bentley, “The human immune system and network intrusion detection,” in
Proceedings of the 7th European Conference on Intelligent Techniques and Soft Computing, 1999.

[30] J. Kim and P. Bentley, “Towards an artificial immune system for network intrusion detection:
An investigation of dynamic clonal selection,” in Proceedings of the Congress on Evolutionary
Computation, 2002, pp. 1015-1020.


