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Abstract

This article presents a brief history of the Evolving Cellular Automata (EvCA) project. In the
EvCA project, a genetic algorithm was used to evolve cellular automata to perform certain (non-trivial)
computational tasks, in an effort to gain more insight into the question: “How does evolution produce
sophisticated emergent computation in systems composed of simple components limited to local interac-
tions? ” Next to providing many interesting results and useful insights, the EvCA project seems to have
spawned a whole research area of its own. Here, a brief overview is given of how it all started, developed,
and inspired further work.

1 The Pre-History

1.1 Computation at the edge of chaos

In 1990 a paper appeared with the provocative title “Computation at the Edge of Chaos” [16]. This
paper, written by Chris Langton (who was later considered to be the founder of the field of Artificial
Life), examined cellular automata and their ability to perform computations. Cellular automata (CA)
are mathematical models of spatial dynamical systems consisting of many simple individual components
(laid out in a regular grid) with only local interactions, yet they are capable of producing complex global
patterns and even performing sophisticated computations. The paper’s main conclusion was that “we
can locate computation within the spectrum of dynamical behaviors at a phase transition here at the ’edge
of chaos’.”

This “spectrum of dynamical behaviors” in cellular automata was represented by a single variable,
called the λ (lambda) parameter, which is actually calculated from the (static) CA update rule, and not
from the resulting dynamical behavior itself. Langton does show in his paper that there seems to be a
correlation (at least qualitatively) between a CA’s λ value and its actual dynamical behavior, but it is
only a weak one, with much variability between individual cases, even for similar λ values. Furthermore,
“computational ability” was not very precisely defined either, but represented by a small number of
general statistics of a CA’s dynamics, which Langton claimed are directly correlated with a capability
for computation (but again, only in a weak and general sense).

Despite this fairly weak support for its main conclusion, the paper had a big impact, and the phrase
‘edge of chaos’ certainly stuck in people’s minds. Even more so since similar ideas (and phrases) were
published around the same time by others (see, e.g., [5, 15]).

1.2 Adaptation toward the edge of chaos

At around the same time, Norman Packard performed the first experiments on evolving cellular automata
with a genetic algorithm [22]. A genetic algorithm (GA) is a stochastic search method modeled after
natural evolution, and can be used to find good (approximate) solutions to difficult optimization problems.
The algorithm maintains a population of candidate solutions, which evolves over time by (probabilistic)
selection of the best (most “fit”) solutions in the current population and (re)combining them in a way
similar to genetic crossover and mutation, producing offspring individuals that constitute the population
at the next generation. GAs are also often used as simple models of actual evolutionary processes.

Packard’s work was inspired by a hand-designed, one-dimensional, two-state CA known as the GKL
rule [9, 8], which was invented to be robust against small errors (“noise”) in the CA’s dynamical update
process. However, this CA also turned out to be capable of performing a computational task known as
density classification, where the CA has to decide whether there are more zeros or more ones in the initial
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configuration (IC), by eventually settling down to an all-zeros or all-ones configuration, respectively. It
was shown that the GKL rule performs this task with a high degree of accuracy for most initial “densities”
(i.e., number of ones in the IC). Only for densities close to 0.5 (i.e., roughly an equal number of zeros
and ones), does its performance (“fitness”) degrade somewhat, to about 70-80% correct classifications.

The GKL rule provides an interesting example of emergent computation in a CA, as the density clas-
sification task requires global information processing whereas the components in the CA (the individual
cells) are limited to local interactions only. Using the density classification task as a concrete exam-
ple of “useful computation”, and a genetic algorithm to evolve CA rules to perform this task, Packard
wanted to test two hypotheses: (1) CA rules able to perform complex computations are most likely to
be found near “critical” λc values (i.e., near the phase transition, or ’edge of chaos’); and (2) when rules
are evolved to perform a complex computation, evolution will tend to select rules near such critical λc

values. Packard’s results seemed to support these hypotheses, as his evolved CA rules did indeed cluster
around critical λ values, and thus showed adaptation toward the edge of chaos.

2 The History

2.1 Revisiting the edge of chaos

Intrigued by this idea of computation at the edge of chaos and the possibility that evolution drives
complex systems toward it under selective pressure, computer scientist Melanie Mitchell (already known
for her earlier work on genetic algorithms), aided by graduate student Peter Hraber, set out to replicate
Packard’s original experiment. Soon, they also enlisted the help of physicist Jim Crutchfield, who had
already worked extensively on cellular automata and dynamical systems theory. Thus was born the
“Evolving Cellular Automata ” (EvCA) group, led by Mitchell and Crutchfield, and based at the Santa
Fe Institute (SFI) in the high desert of New Mexico, USA.

However, the group was not able to replicate Packard’s results. In fact, their results clearly con-
tradicted those of Packard, as their evolved CA rules clustered around λ values away from the critical
(’edge of chaos’) λc values. After constructing a theoretical argument for why this should be so for the
density classification task, and personal discussions with Packard, their only remaining conclusion was
that Packard’s original results must have been due to mechanisms in his particular GA implementation
that were not reported in his paper.

This, together with the mentioned shortcomings in Langton’s work, led the EvCA group to be rather
critical of Langton’s and Packard’s earlier work. It did not necessarily disprove the ’edge of chaos’
hypothesis, but it certainly did not support it, and pointed out that more precise definitions and positive
experimental results were required to support the hypothesis. In their own words: “The results presented
here do not disprove the hypothesis that computational capability can be correlated with phase transitions
in CA rule space. [...] We have shown only that the published experimental support cited for hypotheses
relating λc and computational capability in CAs was not reproduced.” [21, 19]

But this was not the end of the story. In fact, it was only the beginning...

2.2 Emergent computation in evolved cellular automata

Instead of only looking at the λ values of the evolved CA rules, the EvCA group decided to investigate
in more detail the actual dynamical behavior of the evolved CAs, and also their evolutionary history.
This brought up a whole plethora of additional insights. For example, they identified what they called
“epochs” in the evolutionary process. During these epochs, the fitness levels in the GA population are
relatively stable, until a sudden “jump” to a higher fitness level occurs, followed by another epoch of
relative stability, and so on. Furthermore, these jumps clearly correlated with significant changes (caused
by GA-induced mutations in the CA update rules) in the dynamical behavior of the CAs, which gave
rise to a higher fitness value, i.e., increased ability to solve the density classification task [20].

However, as often in science, these additional insights also brought up many new questions. And
so, after recruiting another SFI graduate student, Rajarshi Das, the group decided to perform more
experiments and analyses. In these new experiments, it turned out that a small percentage of the GA
runs actually produced CA rules very similar to the GKL rule that had originally inspired Packard,
with a similar performance on the density classification task (see Figure 1 for an example). Using a
mathematical framework called computational mechanics as applied to CAs, developed by Crutchfield
and Hanson [10, 3], the dynamical behavior of these high-performance evolved CAs was analyzed in terms
of “regular domains”, “particles”, and “particle interactions” [7, 4].
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These mathematical formalizations of the emergent patterns in a CA’s dynamical behavior can be
used to provide a concise description of the CA’s global dynamics, abstracting away from the underlying
individual cells, and eliciting a CA’s “intrinsic computation”. It was argued that these emergent patterns
(in particular the particles and their interactions, as shaped and adapted by the evolutionary process),
were the features that really allowed the CA to perform the necessary global information processing
to solve the density classification task. Furthermore, additional experiments on a different computa-
tional task known as global synchronization, resulted in evolved CAs with very similar particle-based
“computational strategies” [6] (an example is shown in Figure 2).

Using the computational mechanics framework this way, another newly-recruited graduate student in
the group, Wim Hordijk, constructed so-called “particle models” of some of the evolved CAs, where their
global dynamics is modeled at the emergent level of the particles, abstracting away from the underlying
individual cells in the CA. He then showed that these particle models can be used to accurately (and
efficiently) predict the actual CA’s dynamical behavior and, moreover, its performance on the given
computational task [11, 12]. These results thus provided a formal and detailed understanding of emergent
computation in evolved cellular automata.

With all this, the EvCA group had come a long way in answering (at least partly) the more general
question: “How does evolution produce sophisticated emergent computation in systems composed of simple
components limited to local interactions? ” Typical examples of emergent computation in biological (i.e.,
evolved, distributed, and decentralized) systems include foraging and nest building strategies in social
insects, sensory input processing in the brain, and quorum sensing among bacteria, which are all still
highly relevant research topics. Of course the EvCA framework is a (perhaps overly) simplified model
of such biological systems, but as often in science, it is useful to start with the simplest model that still
captures the essential properties and behaviors of interest. And in that sense, the EvCA framework has
certainly been very valuable.

2.3 Extensions of the EvCA framework

Furthermore, in trying to answer this general question, several additional ideas and extensions of the
EvCA framework were pursued as well. Yet another graduate student and group member, Erik van
Nimwegen, developed a mathematical theory that accurately predicts the fitness levels of the evolutionary
epochs observed during the GA evolution of the CAs, and also the speed of evolutionary innovations
between them [28, 29]. This work can also be directly related to ideas about neutral evolution.

Work on co-evolution was done with undergraduate intern Justin Werfel and postdoctoral researcher
Ludo Pagie. In these experiments, the GA contained two populations: the first one being the population
of CA rules, as before, and the second one being a population of initial configurations (ICs) on which
the CA rules are tested. The idea is that these two populations co-evolve, the fitness of a CA rule (from
the first population) being the fraction of ICs (from the second population) it classifies correctly (using
the density classification task), and the fitness of an IC being the fraction of CA rules that misclassify it
[30, 23].

And finally, two-dimensional CAs were also evolved for the density classification task [13].

3 The Future

As all good things must come to an end, so did the EvCA project. The Santa Fe Institute does not
offer permanent positions, and over time the various group members moved elsewhere to pursue their
individual research projects and academic careers. However, in the mean time other researchers had
picked up on the idea of using genetic algorithms (and variants thereof) to evolve cellular automata, and
produced their own results. Some of these early efforts extended the framework to non-uniform CA rules
(where each cell has its own update rule), see e.g. [2, 27]. Others turned it into a competition, trying to
find even better CA rules to perform density classification [1], although this was never the intention of
the original project, as the EvCA group was mostly interested in trying to answer the more fundamental,
scientific questions. Also the idea of using co-evolution was continued by others [14], and the EvCA
framework was later even used as a possible constructive bridge in the computation versus dynamics
debate in cognitive science [24].

By now it has become impossible to keep track of everything that is published on the EvCA topic. In
fact, it seems to have grown into its own research area. More recent work has, for example, introduced
automatic filters to detect coherent structures (such as particles and their interactions) in a CA’s behavior,
and has shown that these are indeed the most complex (“autonomous”) structures in its dynamics
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[25]. Further work has provided measures to quantify information storage and transfer in distributed
computation, leading to direct quantitative evidence in support of the earlier conjectures about the
information processing roles of these emergent structures [17]. However, it also appears that various
micro-level analyses (i.e., based on measures of the update rule itself, as opposed to emergent structures
in the global dynamics) provide useful and additional insights into the overall behavior and computational
ability of evolved CAs and similar distributed systems [26, 18]. So, there clearly are still many issues
to investigate and questions to be answered. It is indeed a pleasure (and also an honor) to see that the
original questions posed, and insights provided, by the EvCA group many years ago are still considered
relevant and interesting today.

In conclusion, what started out as a standard scientific exercise in trying to replicate the results
of other researchers, turned into a whole new research program of its own. Even though the origi-
nal EvCA project is not active anymore, its (former) website is still maintained by Jim Crutchfield,
and contains a list of all the papers published by the group (including links to downloadable copies):
http://csc.ucdavis.edu/∼evca/. And with the continuing efforts and progress by others today, hope-
fully we can truly achieve a full understanding of emergent computation and its evolution in cellular
automata (from a scientific point of view), which could then also lead to useful practical applications
(from an engineering point of view). May the results of the original EvCA project continue to inspire
new efforts and insights!
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Figures

Figure 1: An example of an evolved cellular automaton (CA) for the density classification task. Space
is horizontal (100 cells), and time goes down the page (100 iterations). In the figure on the left the CA
eventually settles down to an all-white configuration, while in the figure on the right it settles down to
an all-black configuration, depending on the (random) initial configuration. The regular domains in the
dynamical behavior of this CA are the all-white, all-black, and checkerboard patterns. The particles are the
boundaries between these regular domains.
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Figure 2: An example (left) of an evolved CA for the global synchronization task, where the CA eventually
settles down to a synchronized oscillation between an all-white and an all-black configuration. The figure
on the right shows the same space-time diagram, but with the regular domains (the locally synchronous
oscillations and the ’zig-zag’ pattern) filtered out, clearly showing the particles and their interactions.
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