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Abstract
The aim of the ecospat package is to make available novel tools and methods to support spatial 
analyses and modeling of species niches and distributions in a coherent workflow. The package is 
written in the R language (R Development Core Team 2016) and contains several features, unique in 
their implementation, that are complementary to other existing R packages. Pre-modeling analyses 
include species niche quantifications and comparisons between distinct ranges or time periods, 
measures of phylogenetic diversity, and other data exploration functionalities (e.g. extrapolation 
detection, ExDet). Core modeling brings together the new approach of Ensemble of Small Models 
(ESM) and various implementations of the spatially-explicit modeling of species assemblages 
(SESAM) framework. Post-modeling analyses include evaluation of species predictions based on 
presence-only data (Boyce index) and of community predictions, phylogenetic diversity and 
environmentally-constrained species co-occurrences analyses. The ecospat package also provides 
some functions to supplement the biomod2 package (e.g. data preparation, permutation tests and 
cross-validation of model predictive power). With this novel package, we intend to stimulate the use 
of comprehensive approaches in spatial modelling of species and community distributions. 
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Background
Spatial ecology lies at the intersection of geography and ecology and examines the role of space in 
ecological processes from local to global scales. One of its overarching aims is to investigate what 
factors shape the distribution of species (Franklin 2009, Peterson et al. 2011) and, departing from 
these, to reconstruct communities and ecosystems (Levin 1992, Dungan et al. 2002, Guisan and 
Rahbek 2011, Hastings et al. 2011). It is now recognized that four main factors shape the distribution 
of species in time and space: environmental suitability, colonisation history and ability, biotic 
interactions, and natural and anthropogenic disturbances (Pulliam 2000, Lortie et al. 2004, Soberon 
2007). In recent years, the use of niche-based, correlative species distribution models (hereafter 
SDMs, but other denominations are also used, such as ecological niche models ENMs, habitat 
suitability models HSMs, or climatic envelope models CEM; see Appendix S1 in Guisan et al. 2013) 
has risen spectacularly (Guisan et al. 2013), fostered by the increasing availability of numerical 
geodata and the tremendous progress in computer and statistical sciences (Dawson et al. 2013). As a 
result, many new methods have been developed (Skidmore et al. 2011) and a still increasing number 
of tools are becoming available to fit SDMs. Examples are BioMapper (Hirzel et al. 2001), Maxent
(Phillips et al. 2006), biomod2 (Thuiller et al. 2016), dismo (Hijmans et al. 2016), and sdm (Naimi and 
Araújo 2016). SDMs are increasingly used to address fundamental and applied questions in a wide 
range of domains, including community modeling (D'Amen et al. In Press), community phylogenetics
(Ndiribe et al. 2013b), co-occurrence analyses (D'Amen et al. 2015a), biodiversity patterns (Mateo et 
al. 2016), anticipating and monitoring biological invasions (Guisan et al. 2014), rare species 
management (Breiner et al. 2015), or conservation phylogenetics (Pio et al. 2011), and the ecospat
package offers functions to support analyses in these different fields. 

Depending on where they take place in the modeling process, methods may be tentatively classified 
as pre-, core or post- modeling (or ‘processing’ in Naimi and Araújo 2016) analyses. Pre-modeling (or 
pre-processing) analyses are usually based on the observational data themselves, and include niche 
quantification (Fitzpatrick et al. 2007, Medley 2010), co-occurrence (Gotelli 2000), or phylogenetic 
diversity (Schweiger et al. 2008, Morlon et al. 2011) analyses. Core-modeling analyses are typically 
based on the quantification of species-environment relationship, using different techniques to 
calibrate models and use them to make spatial predictions (Guisan and Zimmermann 2000) both at 
the individual species and community levels. Finally, post-modeling (or post-processing) analyses 
make use of model predictions, for instance to incorporate a posteriori other filters of species 
distributions (Guisan and Rahbek 2011), such as biotic interactions (e.g. Wisz et al. 2013, D'Amen et 
al. 2015b), or dispersal (Dullinger et al. 2012, Engler et al. 2012). Several software and R packages 
exist to run core modeling analyses for individual species (see above), but fewer tools are available to
support community-level modeling and the pre- and post-modeling analyses presented here (but see
e.g. dismo Hijmans et al. 2016).

Aim of ecospat
The aim of the ecospat package is to provide methods and utilities for spatial and/or temporal 
predictions of species distributions, communities’ properties and related analyses (e.g. niche 
quantification, co-occurrence analyses). It contains a set of miscellaneous functions and methods to 
fit and evaluate SDMs and community models in a coherent analytical framework. The package 
includes novel functions (see below) and improvements of existing ones to supplement those already
available in other packages. The interest of the package is that it possesses functions not only to run 
core modeling analyses at the individual species level, but also at the community level, and it 
additionally provides functions using raw observations and predictions to run pre- and post-modeling
(or processing) analyses respectively. 
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Novelty
The ecospat package includes many novel features. A major pre-modeling feature is the set of 
functions for niche quantification and tests of observed overlap in contrast to null distributions that 
were used in Broennimann et al. (2012)  , Petitpierre et al. (2012)   and many other studies to quantify 
climatic niche shifts between the native and invaded ranges of alien species (see Guisan et al. 2014), 
to analyse niche overlap between different species (see Table 1) and to understand temporal 
dynamics in species niches and distributions (Nogués-Bravo 2009, Maguire et al. 2015). We are not 
aware of any other package (see below, section on niche analyses) – in or outside R – allowing to run 
the same niche analyses, including the possibility to measure niche unfilling, stability and expansion 
(see the COUE framework in Guisan et al. (2014)  , a shortening based on centroid shift, overlap, 
unfilling, and expansion of the niche), to define different environmental spaces, to correct for 
occurrence densities and environmental availability, and to run various tests. 
In addition, two unique core modeling analyses in ecospat are functions to run the very recently 
proposed Ensemble of Small Models (ESM) approach (Breiner et al. 2015) on the one hand, and 
functions to implement the SESAM framework for spatial predictions of species assemblages (Guisan 
and Rahbek 2011, D'Amen et al. 2015a, 2015b) on the other hand. These functionalities represent 
new developments currently only available in ecospat. The package also uniquely contains 
functions to calculate the Boyce index (continuous or based on predefined bins Hirzel et al. 2006) to 
evaluate species distribution predictions when only independent presence data are available
(Petitpierre et al. 2012). 
A major post-modeling feature is the set of improved functions for environmentally-constrained co-
occurrences analyses (based on Peres-Neto et al. 2001), where the environmental constraint is 
implemented by using SDM predictions. Another post-modeling functionality, nicely complementing 
the SESAM framework (e.g. to set phylogenetic constraints on assemblages), is the function to 
predict phylogenetic diversity in geographic space from the stacked predictions of species 
distribution models (e.g. Pio et al. 2011, 2014), which can also be used for simple pre-modeling 
analyses based on raw observations (Ndiribe et al. 2013a, 2013b, Pellissier et al. 2013a, 2013b).

Technical features of the package
The ecospat package is written for use in the R language (R Development Core Team 2016). . The 
latest version 2.1.1 was recently released in CRAN (The Comprehensive R Archive Network) can be 
installed and used under R version 3.3 or higher (for more details see: https://cran.r-
project.org/package=ecospat or use the link from 
http://www.unil.ch/ecospat/home/menuguid/ecospat-resources/tools.html). The ecospat package
depends on a series of other R packages: ade4 (Dray and Dufour 2007), sp (Qiao et al. 2016), raster
(Hijmans 2015), biomod2 (Thuiller et al. 2009), gbm (Zhang 2013), MigClim (Engler et al. 2012) and 
ape (Paradis et al. 2004). For details on the package dependencies, see Figure S1 and Table S1 in 
Supplementary Material. 
Most functions in the ecospat package can be used to perform stand-alone analyses (e.g. niche or co-
occurrence analyses), some functions are specifically designed to be used in supplement to other 
species distribution modeling packages (e.g. biomod2, dismo, migclim; see technical features above), 
but not to replace any functions in these packages. To avoid potential conflicts with other R 
functions, all the functions in the package start with the prefix ‘ecospat.’ (see Table 1 for the main 
functions and their descriptions). The package ecospat is available from http://cran.r-
project.org/web/packages/ecospat/, together with all example data sets referred to in the text. 
It is being constantly updated and we encourage interested users to look for the latest package 
version in CRAN or GitHub (https://github.com/cran/ecospat) and to report any suggestion for 
further improvement. 
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Overview of functions and data sets
The main functions available in the ecospat package support either pre, core- or post-modeling 
analyses, and are described in Table 1 and summarized in Figure S1 (in Supplementary Material) in 
relation to modeling functionalities. The ecospat package contains both novel features (see related
section above) and more common functions already used or known elsewhere. In the latter cases, 
however, most functionalities were not yet made available in a wide-ranging R package, or were 
improved or implemented in ecospat in a different way than in other packages (e.g. spatial 
autocorrelation measure, multivariate environmental similarity surface (MESS), standard species co-
occurrence analysis). It also includes basic but useful functionalities for e.g. preparing the data or 
projecting the models. 
The package provides four test data sets to run examples: ecospat.testData, 
ecospat.testTree, ecospat.testNiche.inv and ecospat.testNiche.nat. The 
first two data sets allow illustrating the use of all community modeling functions, whereas the third 
and fourth ones allow illustrating niche quantification, here in the case of a hypothetical invasive 
species. The first data set, ecospat.testData, contains vegetation plots data with presence 
records of 50 vascular plant species (angiosperms), a set of associated environmental variables (topo-
climatic) and SDM predictions for some species in an area of ~700 km2 in the Western Swiss Alps (see
http://rechalpvd.unil.ch). The second data set, ecospat.testTree, is a phylogenetic tree of 
class ’phylo’ that contains data for the same 50 plant species. The third and fourth data sets, 
ecospat.testNiche.inv and ecospat.testNiche.nat, contain data on geographical 
coordinates of vegetation plots, a set of associated environmental variables (topo-climatic), 
occurrence sites for a hypothetical species and the prediction of its distribution in the native and 
invaded range. 
In the next sections, we describe the key and most unique classes of methods implemented in the 
ecospat package. For the list of main functions, see Table 1 and the ecospat reference manual in
CRAN.

Niche quantification, comparison and tests
Niche quantification, comparison and tests are key components of ecospat. Methods for 
quantifying niches typically rely on either ordination techniques or on niche-based species 
distribution models (see Fig. 3 in Guisan et al. 2014). Compared to existing packages such as NicheA
(Qiao et al. 2016), spa (Zhang 2013) and SDMTools (VanDerWal et al. 2014) that calculate
niche overlap, the methods proposed here were initially the most comprehensive ones (see 
Broennimann et al. 2012). Niche functions in the ecospat package provide tools to quantify and 
compare species niches with an ordination approach. The hypervolume R package (Blonder et al. 
2014) allows some niche quantification but without tests. Because niche functions in ecospat 
allow for direct comparisons of species–environment relationships in environmental space, no 
assumptions are required for the model-based approach (Broennimann et al. 2012). Likewise, the 
direct comparison can be made for a single variable (See example 1) or multiple variables. Most 
importantly, the package allows performing niche equivalency and niche similarity tests (Warren et 
al. 2008), which assess the statistical significance of a measured niche difference against null model 
niches taken randomly within a given background area. It is important to notice here that all 
functions in Broennimann et al. (2007), Broennimann et al. (2012), Petitpierre et al. (2012), and 
Broennimann et al. (2014a) are uniquely found in ecospat (see also Guisan et al. 2014). These 
functions were designed to investigate changes in the niche of invasive species, but they can also be 
used to compare niches between sister species (Broennimann et al. 2014b).

This approach consists of the following steps. First, an ordination technique - usually a principal 
component analysis (PCA) - is used to transform n correlated variables into two uncorrelated linear 
combinations (principal components) of the original variables. The PCA is calibrated using 

4



environmental values from all the pixels of both the native and the invaded study areas. The axes of 
the PCA thus maximize the ecological variance present in the study areas. Then the PCA scores of the
two species distributions, for which the niches must be compared, are projected onto a grid of cells 
bounded by the minimum and maximum PCA scores in the study areas. A smoothed density of 
occurrences for each species in each cell of the grid is then estimated using a kernel density function 
(in a similar way as in the package hypervolume). The global overlap between the niches can be 
calculated using metrics such as Schoener’s D or Hellinger’s I (see Broennimann et al. 2012 for details
of the procedure and metrics). Additionally, in the case of invasive species, the niche overlap can be 
disentangled into three categories: unfilling, stability and expansion. This decomposition provides 
more information about the drivers of niche dynamic between native and invaded ranges (Petitpierre
et al. 2012, Guisan et al. 2014), or outside biological invasions, about how two sister species have 
evolved different niches. Note that one can apply all these analyses on each variable individually (see
Example 1), a very useful step to investigate which predictors are more conserved (e.g. Liu et al. 
2016), and much more informative than boxplots comparisons (e.g. Fig. 1 in Mandle et al. 2010). 

Ensemble of Small Models (ESM)
Another key feature of the package is the implementation of the ESM strategy to model species 
distributions when a limited numbers of presences or occurrences is available (e.g. for rare species, 
cryptic species), typically with less than 30 presence records (Wisz et al. 2008). The ESM approach 
was shown to reduce overfitting in the models and accordingly improve model accuracy in such cases
(Lomba et al. 2010, Breiner et al. 2015). It is based on fitting numerous small models, using two (or 
possibly three or more) variables at each time and finally performs an ensemble of the predictions 
weighted by each submodel performance. It avoids overparameterization of the models, following 
the sample size rule-of thumb of 10:1 subjects to predictors in multiple regression (Harrell 2001). For 
more details on the method, see Lomba et al. (2010)   and Breiner et al. (2015)  . 
The ESM strategy can now be run and customized with four simple functions implemented in the 
ecospat package. None of the existing packages for modeling species distributions (e.g. biomod2
(Thuiller 2003), sdm (Naimi and Araújo 2016), dismo (Hijmans et al. 2016)) currently contains the 
ESM approach. The ESM functions in ecospat depend on biomod2 and allow the selection of the 
eleven different modeling techniques implemented there (and others if later added). Various 
evaluation indices to quantify model performance are available: AUC, TSS, Kappa, Somers D and 
Boyce. ESMs are therefore widely applicable and one or a set of preferred modeling techniques can 
be selected. The possibility to use multicore computation enables running ESMs in ‘parallel’ to speed 
up computation time. The strategy proposed with the ESM functions is as follows: (1) Calibration and 
evaluation of a series of small models with different techniques (i.e. GLM, Maxent, etc.); (2) 
Averaging them into a single ESM per technique, and finally; (3) Producing a single ensemble 
prediction through averaging all single-technique ESMs (i.e. running a double ensembling) (Breiner et
al. 2015). Step 3 can be omitted if one does not want to run a double ensembling, because single-
technique ESMs were shown to perform similarly to ESMs based on a double ensembling (i.e. fitting 
ESMs with different modelling techniques and ensembling them; Breiner et al. 2015). The final ESM 
can then be projected in a different time period or geographic space.

Evaluating model predictions with presence-only data
Additionally, the ecospat package provides the currently most exhaustive R implementation of the 
Boyce index, a presence-only and threshold-independent evaluator for SDMs’ predictions (Hirzel et 
al. 2006). The Boyce index measures the trend in a plot showing the proportion of presences across 
classes of model predictions (similar to the POC-plot of Phillips and Elith 2010) and allows a 
conceptually correct way to evaluate predictions from presence-only models like Maxent (see Hirzel 
et al. 2006 for Boyce, and see Tsoar et al. 2007, Maher et al. 2014 for presence-only models). 
Therefore, it provides a more adequate evaluation in cases where absences do not carry reliable 
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information, typically in cases of non-equilibrium situations, such as with ongoing invasions by exotic 
species (Petitpierre et al. 2012), in case of insufficient detectability of a species (Wintle et al. 2012), 
or in the case where the model uses background data and not true absences (e.g. Maxent). The 
Boyce index measures how much model predictions differ from a random distribution of the 
observed presences across the prediction gradients (Boyce et al. 2002). It is the quantitative 
equivalent of the graphical POC plot (Phillips and Elith 2010) and often suggested to be so far the 
most appropriate metric in the case of presence-only models (Hirzel et al. 2006), although further 
research should be conducted to assess other possible options or possible refinements to evaluate 
presence-only predictions. The Boyce index is analogous to a Spearman correlation and varies 
between -1 and +1. Positive values indicate a model in which predictions are consistent with the 
distribution of presences in the evaluation data set, values close to zero mean that the model is not 
different from a random model, and negative values indicate counter predictions, i.e., predicting 
areas where presences are more frequent as being highly suitable for the species (Hirzel et al. 2006). 
Originally based on predefined (and often arbitrary) classifications of continuous suitability 
predictions, the Boyce index can also be threshold independent if based on a moving window, also 
known as continuous Boyce index (Hirzel et al. 2006). The implementation in ecospat proposes the
standardized continuous index as default but also allows the user to parameterize predefined bins.

Spatial predictions of communities 
SDMs have been increasingly used over the last years to predict different community properties, 
such as species richness, taxonomic composition, functional and phylogenetic patterns, through 
stacking of individual species predictions (S-SDMs, Dubuis et al. 2011, Calabrese et al. 2014, Cord et 
al. 2014, D'Amen et al. In Press). A novel approach has been proposed to improve S-SDMs 
predictions by coupling them with richness predictions (Guisan and Rahbek 2011, D'Amen et al. 
2015a, 2015b). This constraint on S-SDM predictions was proposed as one step in the larger 
‘spatially-explicit species assemblage modeling’ (SESAM) framework. The latter seeks to reconstruct 
species assemblages by implementing the series of successive dispersal, habitat and biotic filters, and
– if needed – the previously described macroecological constraints, as distinct modeling steps
(Guisan and Rahbek 2011). SESAM, as implemented in ecospat, had been tested to date by 
applying three successive steps (D'Amen et al. 2015a, 2015b): 1) Calculating the habitat suitabilities 
of individual species presence for each site - these can typically be obtained by fitting an SDM for 
each species (i.e. S-SDM); this step represents the application of an environmental filter to the 
community assembly; 2) Computing richness predictions for each site – the richness prediction can 
be derived in different ways, for instance by summing probabilities from individual species prediction
for each site, or by fitting direct macroecological richness models (MEM); this step represents the 
application of a macroecological constraint to the average number of species that can coexist in the 
considered unit; 3) Applying a biotic rule to decide which species, potentially present in the site, 
should be retained in the final assemblage prediction to match the predicted richness value. This last 
step is implemented in ecospat by the “probability ranking” rule (PRR), which consists of ranking 
the species in decreasing order of predicted probability of presence (obtained from the SDMs) and 
selecting species from the most probable species down the list until the sum of selected species 
reaches the expected richness value obtained in step 2 (D'Amen et al. 2015a, 2015b). 

Environmentally-constrained species co-occurrence analyses
In the context of predicting the spatial distribution of species assemblages, a key challenge is to 
identify significant species interactions (Wisz et al. 2013). In this regard, a novel post-modeling 
methodology of the ecospat package allows running environmentally-constrained pairwise species
co-occurrence analyses based on a null model approach (as in Peres-Neto et al. 2001). This 
functionality uses the function ecospat.cons_Cscore() and allows to identify significant 
patterns of co-occurrence in a presence/absence species matrix, classifying each individual pair of 
species, as random, aggregated, or segregated. The strength of the association is calculated by the C-
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score index (Stone and Roberts 1990), as Cij = (Ri - D)(Rj - D), where Cij is the C score for species 
pair i and j, Ri is the row total (the number of species occurrences) for species i, R j is the row total for 
species j, and D is the number of shared sites in which both species are present (Gotelli 2000). C-
scores for individual species pairs and for the whole community are calculated and compared to the 
statistical expectation for a set of environmentally-constrained null communities. These are 
generated following the algorithm Ct-RA1 proposed in Peres-Neto et al. (2001), where the species 
presences are reassigned to sites in the matrix according to the relative probability values, 
maintaining fixed species frequencies (see Peres-Neto et al. 2001 for further explanations). The 
probability values in the sites can be obtained by fitting Species Distribution Models (SDMs) for each 
species. This function can also be run as a pre-modeling analysis if the environmental constraints 
applied to the null models are not based on the SDM predictions. This approach is expected to 
maximize the chance of distinguishing between mutually exclusive processes that may shape species 
distributions and community assembly, as environment is factored out as a possible explanation for 
the patterns encountered (Peres-Neto et al. 2001).

Evaluating community predictions
When modeling species assemblages (Guisan and Rahbek 2011), it is known that the accumulation of
small errors in individual models can produce larger errors in the final predictions (Dubuis et al. 2011,
Pottier et al. 2013). Therefore, a robust evaluation of community predictions is an important step in 
spatial ecology analyses (Pineda and Lobo 2009, Pottier et al. 2013). The function 
ecospat.CommunityEval()allows a list of evaluation metrics (such as sensitivity, specificity, 
kappa, TSS, etc.) to be calculated for each site at the community level, permitting for a better 
understanding of the prediction accuracy and differences, for example in diverse habitat types at 
various elevations (e.g. Mateo et al. 2012, Pottier et al. 2013). The function can be applied to the 
outcomes of any community-level model, e.g. S-SDM or SESAM predictions.

Phylogenetic diversity measures
The calculation of phylogenetic diversity measures on observed (pre-modeling) or predicted (post-
modeling) coarse species assemblages (as in Pio et al. 2011, 2014) or local communities (Ndiribe et 
al. 2013a, 2013b), provides a comprehensive list of indices and optimized calculations for large data 
sets (which are then important for producing maps). The function ecospat.calculate.pd() 
uses a phylogenetic tree, a presence or absence (binary) matrix for each species in each location or 
grid cell (direct observations, S-SDM binary predictions or SESAM predictions), and different 
phylogenetic diversity measures (Schweiger et al. 2008). For each grid cell in the study area, the 
function calculates each of the phylogenetic diversity measures listed in Schweiger et al. (2008)   
based on either tree topology, branch length or minimum-spanning tree measures. Three measures 
are based on topology (node information only): W (standardized taxic weights), Q (basic taxic 
weights), and P (normalized measure of Q). Five measures are based on pairwise distances: J 
(intensive quadratic entropy), F (extensive quadratic entropy), AvTD (average taxonomic 
distinctness), TTD (total taxonomic distinctness), and Dd (pure diversity). Finally, three so-called 
minimum-spanning measures are based on both branch length and node information: PDroot (clade 
when root=FALSE; phylogenetic diversity with basal branches), PDnode (clade when root=TRUE; 
phylogenetic diversity), and AvPD (species; average phylogenetic diversity). These measures can be 
classified on the basis of whether they sum (Q, P, W, PDnode, PDroot, F, TTD, Dd) or average (AvTD, J,
AvPD) the evolutionary history of all species present in an area. Specific examples using this function 
are found in (Pio et al. 2011, 2014). Different R packages allow similar analyses, but ecospat has a 
few novelties and differences here. For example, the picante R package does calculate the same 
phylogenetic diversity measures based on topology and minimum spanning measures, but it does 
not refer to them exactly with the same names (Kembel et al. 2010). The package Phylomeasures
(Tsirogiannis and Sandel 2015) also provides functions to calculate the same measures. Unlike 
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picante and Phylomeasures, however, the function ecospat.calculate.pd()includes the 
additional option to calculate five measures based on pairwise distances (see Schweiger et al. 2008).

Developed examples with ecospat
To illustrate the use of the ecospat package, we created two examples of analytical workflows that 
can be easily reproduced by users, involving the main set of functions in ecospat. In the first 
example, we illustrate how to compare the climatic niche of a hypothetical invasive species in its 
native and invaded ranges. We then predict its non-native distribution by applying an ensemble of 
small models (ESM) to avoid model overfitting because only few occurrences exist for the invasive 
species in its invaded range. We finally show how to calculate the Boyce index to evaluate the non-
native prediction to assess model performance in cases like this where only presence data are 
available and absences may not be reliable (i.e. here the species is still expanding).
In the second example we perform a spatial analysis of a plant community, examining its 
phylogenetic and co-occurrence patterns and producing spatial predictions of the assemblages using 
novel functions in the ecospat package. We first compute different phylogenetic diversity 
measures, which can then be calculated on the predicted species assemblage as well, e.g. to 
estimate the difference in phylogenetic diversity under current and future climatic scenarios. We 
next illustrate the implementation of the SESAM framework to predict the spatial distribution of 
communities, applying a biotic rule to estimate the taxonomic composition of species in each site. 
We then calculate several evaluation indices of community-level models, in order to evaluate the 
community predictions. Finally, we analyze the spatial patterns of geographic overlap in the 
distributions of the species in the study area to illustrate the application of the environmentally-
constrained null model. Complete scripts to run the two examples and to illustrate the use of the 
ecospat package are provided in the supplementary material S1 and S2.

Example 1: Niche quantification and modeling of an invasive species
The first example illustrates the use of the functions to investigate whether the climatic niche of a 
one species may differ between different geographic areas, and the use of the ESM functions to 
model the species’ distribution in the two ranges when few occurrences are available. This niche 
comparison framework is typically used to quantify and describe environmental niche shifts between
the native and exotic ranges of invasive species or between sister species. The ESM functions can be 
used here to model distributions when the species is not (yet) very frequent, as typically at the start 
of an invasion in the exotic range. An overview of how the tools used in example 1 can be applied to 
different case studies is given in Table 1 (see also Guisan et al. (2014)   and Breiner et al. (2015)  ). 
In this example we first compare the niche of a species native in North America and introduced in 
Australia, then calculate a SDM using ESM, and finally evaluate the SDM’s ability to predict the 
distribution with the Boyce index. The script in Supplementary Material S1 generates occurrence 
density, niche overlap, niche equivalency and similarity tests, and uses a brand new tool allowing the 
calculation and the visualization of the niche dynamic as objects in the R environment. The 
occurrence density generated by the function ecospat.grid.clim.dyn() measures the 
frequency of occurrences of the species for each combination of conditions (i.e. each grid cell) of the 
environmental space using a kernel smoother. The function ecospat.niche.overlap() uses 
the differences in occurrence densities between the two species to measure either Schöner’s D or 
Hellinger’s I metrics, both of which range from 0 (no overlap) and 1 (complete overlap). The 
functions ecospat.niche.equivalency.test() and 
ecospat.niche.similarity.test() perform tests of niche equivalency and similarity as 
described in Warren et al. (2008)   but applied in environmental space, where the overlap is better 
assessed than in geographical space because it better takes into account climate availability and 
analogy between ranges (Broennimann et al. 2012, Guisan et al 2014; but note that the last version 
of the ENMtool by Warren et al. (2008) implemented the ecospat approach to test niche 
differences in environmental space). The niche equivalency test assesses, through random 
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permutations of occurrences between ranges, whether the two niches are equivalent. The niche 
similarity test assesses, through random shifts of the niches within available conditions in the study 
area, whether the species’ niches are more or less similar than expected by chance. Here, we want to
test for niche conservatism, so we use the alternative = "greater", i.e. the niche overlap is more 
similar than random expectations. Note that in the case of invasive species, we fixed the native niche 
as a reference and shifted only the invasive niche (rand.type = 2). In cases where there are no 
assumption about a reference niche (e.g. sister species), both niches can be simultaneously shifted 
(rand.type = 1). For details on niche equivalency and similarity tests, see Warren et al. (2008)   
and Broennimann et al. (2012)  . Figure 1A provides an example scheme of the output from the 
analysis of a species in the invaded and native range (Complete Script available in Supplementary 
Material S1). We see that the niche overlap D is 0.22, and the tests further indicate that the niches of
the example species in the native and invaded ranges are not more equivalent neither not more 
similar than expected by chance with p-value of 1 and 0.079 respectively. Therefore, we can conclude
that there is no significant climatic niche conservatism between native and invaded ranges. The niche
dynamics analysis shows that this niche difference is due to the species’ ability to expand into novel 
climates in the invaded range (niche expansion = 15%) and to the fact that the species has not (yet) 
colonized all the climate conditions of the native niche (niche unfilling = 28%). A visual inspection 
shows also that an important part of the cold climate conditions available in the native range are no 
longer available in the invaded range.

We next built an ESM (Ensemble of small models), by fitting with the 
ecospat.ESM.Modeling() function all possible models that contain only two predictors at a 
time out of all those available in the initial set of eight variables (from 
ecospat.testNiche.inv), resulting in 28 bivariate predictor combinations. Then all bivariate 
models were combined to an ensemble model (Lomba et al. 2010, Breiner et al. 2015) with the 
ecospat.ESM.EnsembleModeling() function. The function first evaluates each bivariate 
model by a cross-validated (repeated split-sample) evaluation index (in our case AUC), and builds 
then an average of the 28 models weighted by a cross-validation score (in our case Somers’ D, which 
is AUC*2-1). Models with a Somers’ D higher than 0 (i.e. AUC > 0.5) were selected to build the final 
ensemble. For more details refer to Breiner et al. (2015)  . For details see Fig. 1B.
Finally, we evaluate the SDM’s ability to predict the non-native distribution with the Boyce index, a 
presence only evaluator, with the function ecospat.boyce().This function returns the Boyce 
index value: Spearman.cor (in our example 0.889), which is the Spearman correlation of the PE 
plot, a graphical plot of the predicted to expected ratio within a moving window along the suitability 
gradient (Fig. 1C). If the rank of the predicted to expected ratio would be completely ordered along 
the habitat suitability gradient, then the Boyce index would be 1. With a score of 0.889, we can 
assume that the SDM is useful to independently predict the species invasion in Australia (Fig. 1B). 
Additionally, such PE plots can be used to reclassify maps of continuous suitability values into 
discrete categories like potential presences or absences, which is particularly useful for conservation 
managers (Hirzel et al. 2006) or to recalibrate presence-only SDM’s continuous suitability (Phillips 
and Elith 2010). 

Example 2: Species assemblage’s structure and spatial predictions
The tools used in example 2 can be applied to provide an evaluation of the probability of occurrence 
of different species within a community, and to model the spatial distribution of richness and 
composition in a community, obtaining predictions of species assemblages more realistic than those 
obtained by stacking individual species predictions. For an overview of different questions that can 
be addressed using the tools of this example, refer to Table 1, Pio et al. (2011, 2014) and D’Amen et 
al. (2015a, 2015b).Along this second example, we explore different community properties of plant 
assemblages in the Swiss Alps. In particular, we analyze phylogenetic diversity, we predict plant 
species richness and composition and we use null model analysis to describe the spatial pattern of 
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pairwise species co-occurrence. First, we illustrate the use of the function 
ecospat.calculate.pd() by using presence-absence data with a phylogenetic tree in order to
obtain different phylogenetic diversity measures, but the same function can also be applied to a 
predicted species assemblage. In the code in the Supplementary Material S2, we show how to load 
the phylogenetic tree and the data for the example. The resulting object is a list of phylogenetic 
diversity values for each of the grid cells in the presence/absence matrix, which can be plotted to 
obtain a graphical representation of the correlation of phylogenetic diversity with species richness 
(Fig. 2A).Second, we predict community composition with the function ecospat.SESAM.prr(). 
This function implements the final step of the SESAM assemblage, i.e. the “probability ranking rule”
(PRR; D'Amen et al. 2015a). The data required for the function are two data frames of: (1) continuous
probabilities from SDMs for all species (in columns) in the considered sites (in rows), and (2) richness 
value for each site (first column). In cases where the SDMs were fitted with presence/absence data, 
thus yielding true probabilities, the richness prediction can then be obtained by summing all raw 
probabilities (across species) at each site. Alternatively, a similar prediction can be obtained by a 
separate species richness model. The function returns a data frame of the same structure as the 
input one, containing the community prediction by the SESAM framework, i.e. binary predictions for 
the species in each site (see D'Amen et al. 2015a). For details see example in Fig. 2B. Third, we 
calculate community-predictions accuracy with different indices with the function 
ecospat.CommunityEval() that requires the observed presence-absence of the species 
(eval) and their predictions (pred). The returned object is a list of evaluation metrics calculated for
each site (See Fig. 2C for details). 

Finally, we perform a co-occurrence analysis and test for non-random patterns of species co-
occurrences applying an environmentally-constrained null model (Peres-Neto et al. 2001), with the 
function ecospat.cons_Cscore(). The format required for the input data is a matrix of plots 
(rows) x species (columns). Input matrices should have column names (species names) and row 
names (sampling plots). The function returns the C-score index for the observed community 
(ObsCscoreTot), the mean of C-score for the simulated communities (SimCscoreTot), the p 
values (PVal.less and PVal.greater) to evaluate the significance of the difference between 
the former two indices, and finally returns the standardized effect size (SES) for the whole 
community (SES.Tot). A SES greater than 2 or smaller than -2 is statistically significant with a tail 
probability of less than 0.05 (Gotelli and McCabe 2002). If a community is structured by competition, 
we would expect the C-score to be large relative to a randomly assembled community (positive SES). 
Also, to test for patterns in each individual pair of species in the matrix, a table is saved in the 
specified working directory. This table contains the observed and expected C-score value and the 
standardized effect size for species pairs and it includes only those pairs with p values lower than 
0.05. A further correction for false discovery rate may be needed on the basis of the dataset size
(Gotelli and Ulrich 2010). This option is planned but not yet implemented in the package. 
Furthermore, the function automatically plots two frequency histograms: the first one represents the
C-score indices from the simulated communities, where the observed C-score value is indicated by 
the black solid line (Fig. 2D), and the second histogram represents the distribution of the SES values 
calculated for all the unique combination of species pairs in the considered community (Fig. 2D). In 
this case, the observed C-score is significantly lower than expected by chance (in our example the p 
value is 1 e-4), meaning that the community is dominated by positive interactions (aggregated 
pattern; as can be expected in alpine plant communities under stressful conditions at high elevations;
Callaway et al. 2002). The complete script to run the example is available in the Supplementary 
Material S2. 
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Citation of the ecospat package
The latest available version of the ecospat package in CRAN is 2.1.1 and the license of the package 
is GPL (General Public License is a free, copyleft license for software and other kinds of works). It can 
be installed from CRAN using the usual code line as follows:
> install.packages("ecospat")
Scientists using ecospat functions in a published paper should cite this article or the ecospat 
package directly. Citation information can be obtained by typing:
> citation("ecospat")
on the R command prompt. 
Some of the methods implemented in ecospat have been published (Table 1) but their scripts 
were only available in the related papers and so far not in open access. Users should refer to the 
respective publications for details of the methods and interpretation. Users of the package who 
apply these methods should cite as much as possible the original sources as appropriate, along with 
ecospat. 
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Table 1. Main functions, their description and published references of the ecospat package.

Tool Sub-Tool Function Description References where functions has been used

Pre-
modelling

Spatial 
autocorrelation

ecospat.mantel.correlogram Investigates spatial autocorrelation of environmental covariables within a set of 
occurrences as a function of distance.

 

Variable selection ecospat.npred Calculates the maximum number of predictors to include in the model with a 
desired correlation between predictors.

Petitpierre et al (2012) Science 335: 1344.

Extrapolation 
Detection

ecospat.exdet Assess climate analogy between a projection extent (proj) and a reference 
extent (cal, used in general as the background to calibrate SDMs0

 

Multivariate 
Environmental 
Similarity Surfaces

ecospat.mess Calculates the MESS (i.e. extrapolation) as in Maxent (Elith et al. 2010). Broennimann et al (2014) J. Biogeogr. 41: 1126; Mateo et al 
(2015) Ecography 38: 480ecospat.plot.mess Plots the MESS extrapolation index onto the geographical space.

Phylogenetic 
diversity measures

ecospat.calculate.pd Calculates phylogenetic diversity measures (Schweiger et al. 2008).

Pio et al (2011) Conserv. Biol. 25: 1229; Ndiribe et al (2013) 
Ecol. Evol. 3: 4925; Ndiribe et al (2013) J. Plant Ecol. Rtt064; Pio
et al (2014) Glob. Change Biol. 20: 1538.

Biotic Interactions ecospat.co-occurrence Computes an index of co-occurrences ranging from 0 (never co-occurring) to 1 
(always co-occuring).

Pellisier et al (2010) Ecography 33: 1004

Niche 
quantification

ecospat.grid.clim.dyn
Using the scores of an ordination, create a grid z of RxR pixels (or a vector of R 
pixels when using scores of dimension 1 or SDM predictions) with occurrence 
densities. Only scores of one, or two dimensions can be used.

Boulangeat et al (2012) Ecol. Lett. 15: 584; Boulangeat et al 
(2012) Glob. Chang. Biol. 18: 3464; Estrada-Pena et al (2012) 
Plos One 7: e36976; Monahan et al (2012) Plos One 7: e42097;
Pellissier et al (2012) J. Evol. Biol. 25: 1658; Petitpierre et al 
(2012) Science 335: 1344; Poudel et al (2012) Plos One 7: 
e46873; Wielstra et al (2012). Plos One 7: e46671; 
Ahmadzadeh et al (2013) J. Biogeogr. 40: 1807; Estrada-Pena et
al (2013) Exp. Appl. Acarol. 59: 351; Fourcade et al (2013) Biol. 
Conserv. 167: 161; Di Febbraro et al (2013) Plos One 8: 
e66559; Alexander (2013) Proc. R. Soc. Lond. (Biol) 280: 
20131446; Ahmadzadeh et al (2013) Plos One 8: e80563; 
Iwamura et al (2013) Glob. Environ. Chang. 23: 1277; Koch et 
al (2013) Zootaxa 3745: 263; Maiorano et al (2013) Glob. Ecol. 
Biogeogr. 22: 302; Martinez-Cabrera et al (2013) Plos One 8: 
e83087; Strubbe et al (2013) Glob. Ecol. Biogeogr. 22: 962; 
Theodoridis et al (2013) J. Biogeogr. 40: 1278; Werner et al 
(2013) Ecography 36: 1127; Broennimann et al. (2014) Biol. 
Lett. 10: 20140638; DeChaine et al (2014) Ecol. Evol. 4: 3940; 
Early (2014) Glob. Ecol. Biogeogr. 23: 1356; Blonder et al 
(2014) Glob. Ecol. Biogeogr. 23: 595; Fourcade et al (2014) Plos
One 9: e97122; Glennon et al (2014) Ecol. Lett. 17: 574; 
Goncalves et al (2014) Plos One 9: e111468; Grossenbacher et 
al (2014) Evolution 68: 1270; Grundy et al (2014) Ibis 156: 355;
Le Roux et al (2014) New Phytol. 204: 230; Li et al (2014) Glob. 
Ecol. Biogeogr. 23: 1094; Montecino et al (2014) Aq. Inv. 9: 

ecospat.niche.equivalency.tes
t

Runs a niche equivalency test (Warren et al 2008) based on two species 
occurrence density grids.

ecospat.niche.similarity.test Runs a niche similarity test (Warren et al. 2008) based on two species 
occurrence density grids.

ecospat.plot.niche Plots a niche z created by ecospat.grid.clim.dyn().

ecospat.plot.niche.dyn Plots niche categories and species density.

ecospat.plot.contrib Plots the contribution of the initial variables to the analysis (i.e. correlation 
circle). Typically these are the eigen vectors and eigen values in ordinations.

ecospat.niche.overlap Calculates the overlap metrics D and I based on two species occurrence density 
grids z1 and z2 created by ecospat.grid.clim.dyn().

ecospat.plot.overlap.test Plots a histogram of observed and randomly simulated overlaps, with p-values of
equivalency or similarity tests.

ecospat.niche.dyn.index Calculates niche expansion, stability and unfilling.
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507; Pena-Gomez et al (2014) Plos One 9: e105025; Russo et al
(2014) Plos One 9: e110894; Saupe et al (2014) Proc R Soc 
Lond (Biol) 281: 20141995; Silva et al (2014) Plos One 9: 
e113246; Strubbe et al (2014) Biol. Invasions 16: 759; Tingley 

Core
Niche

Modellin
g

Model evaluation

ecospat.cv.glm K-fold and leave-one-out cross validation for GLM.

Randin et al (2006) J. Biogeogr. 33: 1689; Pearman et al (2008) 
Trends Ecol. Evol. 23: 149; Engler et al (2009) Ecography 35: 
872; Patsiou et al (2014) Glob. Chang. Biol. 20: 2286.

ecospat.permut.glm A permutation function to get p-values on GLM coefficients and deviance.

ecospat.cv.gbm K-fold and leave-one-out cross validation for GBM.

ecospat.cv.me K-fold and leave-one-out cross validation for Maxent.

ecospat.cv.rf K-fold and leave-one-out cross validation for randomForest.

ecospat.boyce Calculates the Boyce index (Hirzel et al. 2006).
Petitpierre et al (2012) Science 335: 1344; Falcucci et al (2013).
Biol. Conserv. 158: 63; Strubbe (2013) Glob. Ecol. Biogeogr. 22: 
962; Mateo et al (2015) Ecography 38: 480; Suárez Seoane ‐

ecospat.CommunityEval Calculates several indices of accuracy of community predictions.
Dubuis et al (2013) J. Veg. Sci. 24:593; Pottier et al (2013) Glob.
Ecol. Biogeogr. 22: 52; D'Amen et al (2015). J. Biogeogr. 
42:1255.

Spatial predictions 
and projections

ecospat.ESM.Modeling Calibrates simple bivariate models as in Lomba et al. 2010 and Breiner et al. 
2015.

Lomba et al (2010) Biol. Conserv. 143: 2647; Breiner et al 
(2015) Methods Ecol. Evol. 6: 1210.

ecospat.ESM.EnsembleModeling Evaluates and averages simple bivariate models to ESMs.

ecospat.ESM.Projection Projects simple bivariate models into new space or time.
ecospat.ESM.EnsembleProjectio
n Projects calibrated ESMs into new space or time.

ecospat.SESAM.prr Implement the SESAM framework to predict community composition using a 
'probability ranking' rule.

D’Amen et al (2015) J. Biogeogr. 42: 1255; D’Amen et al (2015) 
Glob. Ecol. Biogeogr. 24: 1443

ecospat.migclim

Enables the implementation of species-specific dispersal constraints into 
projections of species distribution models under environmental change and/or 
landscape fragmentation scenarios, by calling MigClim functions (Engler et al. 
2012).

Bateman et al (2013) Divers. Distrib.19: 1224; Normand et al 
(2013) Phil. Trans. R. Soc. B 368: 20120479; Gimona et al 
(2015) Landsc.Ecol. 30: 771; Lurgi et al (2015) Methods Ecol. 
Evol. 6:247.

Post
Modellin

g

Variance Partition ecospat.varpart Performs variance partitioning for binomial GLM based on the deviance of two 
groups or predicting variables.

Randin et al (2009) J. Veg. Sci. 20: 996; Pellissier et al (2010) 
Ecography 33: 1004.

Spatial predictions 
of species 
assemblages

ecospat.cons_Cscore Tests for non-random patterns of species co-occurrence and calculates the C-
score index for the whole community and for each species pair.

D’Amen et al (2015) J. Biogeogr. 42: 1255; D’Amen et al (2015) 
Glob. Ecol. Biogeogr. 24: 1443
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Figure 1. A schematic representation of the workflow used in Example 1. The grey boxes indicate the 
names of the functions. (A) Plot of the occupancy of the environment by the species in the native 
and invaded range. Niche overlap values for native and invaded range, in terms of Schoener’s D, 
niche similarity p-values and equivalency p-values via randomization. Niche equivalency test and 
falling outside the 95% confidence interval of the niche similarity test. (B) Model calibration and 
projection with Ensemble of Small Models (ESM). (C) Plot of the predicted to expected ratio along 
the suitability classes.
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Figure 2. A schematic representation of the workflow used in Example 2. The grey boxes indicate the 
names of the functions. (A) Correlation of phylogenetic diversity (pd) with species richness (index). 
(B) Community prediction by the SESAM framework (i.e. binary predictions for all species for each 
site). (C) List of evaluation metrics calculated for each site. (D) Frequency histogram for simulated C-
scores in the null community and frequency histogram for standardized effect size in the observed 
community: number of species pairs forming perfect checkerboard distributions.
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