
Cellular Automata for Image Noise Filtering

P. Jebaraj Selvapeter
Senior Engineer – DSP

Jasmin Infotech
Chennai, India

jebarajsp@gmail.com

Wim Hordijk
Dept. of Statistics

University of Oxford
Oxford, UK

wim@santafe.edu

Abstract

This paper presents an image noise filter based on cellular
automata (CA), which can remove impulse noise from a
noise corrupted image. Uniform cellular automata rules are
constructed to filter impulse noise from both binary and
gray scale images. Several modifications to the standard
CA formulation are then applied to improve the filtering
performance. For example, a random CA rule solves the
noise propagation present in deterministic CA filters. A
mirrored CA is used to solve the fixed boundary problem.
The performance of this CA approach is compared with
the classical median filter and different switching filters in
terms of peak signal to noise ratio. This comparison shows
that a filter based on cellular automata provides significant
improvements over the standard filtering methods.

1. Introduction

Digital image processing plays an important role in
daily life applications such as satellite television, magnetic
resonance imaging, and computer tomography, as well as
in areas of research and technology such as geographical
information systems and astronomy. However, data sets col-
lected by image sensors are generally contaminated by noise.
Imperfect instruments, problems with the data acquisition
process, and interfering natural phenomena can all degrade
the data of interest. Furthermore, noise can be introduced
by data transmission errors and/or data compression. Thus,
noise filtering is often a necessary first step before the
image data can be analyzed. However, image noise filtering
still remains a difficult challenge because noise removal
introduces artifacts and causes blurring of images.

One particular kind of noise, impulse noise, is often
caused by malfunctioning pixels in camera sensors, faulty
memory locations in hardware, or transmission in a noisy
channel. The median filter was once the most popular non-
linear filter for removing impulse, or “salt and pepper” noise,
because of its good “denoising” power and computational
efficiency. However, when the noise level is over 30%, this
filter smears some details and edges of the original image.
Different remedies of the median filter have been proposed,

e.g. the rank conditioned median filter [1], adaptive median
filter [2], progressive switching median filter [3], or the
median filter based on homogeneity information [4]. These
so-called “decision based” or “switching” filters first identify
possible noisy pixels and then replace them by using the
median filter or its variants, while leaving all other pixels
unchanged. These filters are good at detecting noise even
at a high noise level. But their main drawback is that the
noisy pixels are replaced by some median value in their
vicinity without taking into account local features such as
the possible presence of edges. Hence details and edges are
not recovered satisfactorily, especially when the noise level
is high.

In this paper, we present a filter based on cellular automata
[5], [6], which is used to remove impulse noise from
noise-corrupted images. Our cellular automaton algorithm
is applicable to both binary and gray level images, whereas
in [5], [6] only binary images were considered. Furthermore,
we investigate several different variants of the standard CA
rule to improve the performance. Our results using a cellular
automaton based filter indeed show significant improvements
over the performance of the various standard median filters.

2. Cellular Automata

Cellular automata (CA) were first introduced by John von
Neumann (after a suggestion by Stanislaw Ulam) in the
late 1940’s [7], [8]. But only in the late 1960’s, when John
Horton Conway developed the Game of Life [9], did cellular
automata become more well-known and popular [10].

The essential property of a CA is a regular d-dimensional
lattice of cells (d is in most cases only one or two), where
each “cell” of this lattice has a discrete state, which is
updated at discrete time steps according to a deterministic
update rule. This rule determines the state of a cell at the
next time step, depending on the state of the cell itself
and that of other cells in its local neighborhood. This local
neighborhood is often simply the adjacent cells (left and
right in 1-D CAs, or left, right, up, and down in 2-D CAs),
or some extension of that.

A CA update rule can be expressed as a lookup table
that lists for each possible local neighborhood configuration



(“nbh”) the state which is taken on by the central cell
at the next time step (“state”). Figure 1 illustrates a 1-D
binary state nearest neighbor cellular automaton. The lattice
configuration (10 cells wide) is shown at two successive time
steps. For example, the local neighborhood configuration of
the third cell at time step t = 0 is “001” (the current values
of the second, third, and fourth cells), and the lookup table
states that this cell will be in state “1” at the next time
step t = 1. All cells in the lattice are updated in a similar
way and simultaneously. Note that in this example periodic
boundary conditions are used, i.e., the lattice is viewed as a
circle with the leftmost cell being the right neighbor of the
rightmost cell and vice versa.

Rule table

nbh: 000 001 010 011 100 101 110 111
state: 0 1 0 1 0 0 1 0

CA lattice

t = 0 : 1 0 0 1 1 0 1 0 1 1
t = 1 : 1 0 1 1 1 0 0 0 1 0

Figure 1. Illustration of a simple 1-D CA.

3. CA for Noise Filtering

A digital image is a two dimensional array of n×m pixels,
each with a particular gray value or color. An image can
thus also be considered as the lattice configuration of a 2-D
cellular automaton where each cell corresponds to an image
pixel, and the possible states are the different gray values
or colors. In our experiments, binary (black and white)
images and 256-level gray scale images are considered. We
used a Moore neighborhood (the eight neighboring cells
surrounding a cell) on binary images, and a Von Neumann
neighborhood (the four neighboring cells up, down, left, and
right) on both binary and gray scale images. Fixed value
boundary conditions are applied, i.e., the update rule is only
applied to non-boundary cells. An impulse noise corrupted
image is taken as the initial CA lattice configuration.

To remove this noise from the images, we used a “ma-
jority” CA update rule. This rule is stated as follows: if
the center pixel (cell) gray level is 0 or 255 (i.e., black or
white), then the gray level that is the majority in the local
neighborhood replaces the center pixel’s value. If none of the
gray levels in the local neighborhood is a majority, then there
is a tie. This can be dealt with either deterministically or ran-
domly. In the deterministic rule, the center pixel is replaced
by the gray level which is in a fixed position in its local
neighborhood (e.g., the pixel directly above it). Obviously
this choice of the fixed position of the replacement pixel is

arbitrary (it could also be the pixel directly below, or to the
left, etc.). In general, we do not expect this choice to make
a difference in the filtering performance, unless there is a
clear “orientation” or directional color gradient present in the
image. In the random majority rule, the center pixel’s value
is replaced by the gray level of a randomly chosen pixel in
its local neighborhood. In this case, the replacement pixel is
chosen independently (at random) for each occurrence of a
tie.

The CA noise filtering method is evaluated and compared
with standard filtering techniques in terms of the peak signal
to noise ratio (PSNR). We used one binary image (“Cam-
eraman”) and two gray scale images (“Fishing boat” and
“Lena”) as test cases. We considered impulse, or “salt and
pepper” noise, which means: 1) only a (random) proportion
of the image pixels are corrupted, and 2) a noisy pixel takes
either a very large value as a positive impulse (gray scale
value 255) or a very small value (0) as a negative impulse.
The noise ratio is used to represent how much an image is
corrupted. For example, if an image is corrupted by 30%
impulse noise, then 15% of the pixels in the image are
corrupted by positive impulses and 15% of the pixels by
negative impulses (randomly).

Finally, note that the CA filtering algorithm does not
require any more computational time or effort than the stan-
dard filtering methods, and is therefore at least as efficient.
The running time is linear in the number of pixels in the
image.

4. Experimental Results

Table 1 shows the peak signal to noise ratio (PSNR)
for different filters and noise ratios for the “Cameraman”
image. These results show that the performance of a median
filter with window size 3× 3, switching-I scheme [11], and
adaptive median filter are the same. The performance of a
switching-II filter [11] is comparable with that of the CA
filter with a Von Neumann neighborhood. But at higher noise
levels the CA filter outperforms the switching-II filter. The
reconstructed images in Figure 2 show that when the window
size increases the median filter performance degrades, as
it produces a blurred image. It is clear form the results
presented in table 1 that the performance of the CA filter
with a Moore neighborhood is better than that of all other
filters.

Table 2 shows the results for the 256-level gray scale
“Fishing boat” image. A deterministic CA rule results in
noise propagation, which is solved by using a random rule
for breaking majority ties, as explained above. The random
CA rule improves the performance by 1 to 3 dB (depending
on the noise level) compared with the deterministic CA filter,
and both clearly outperform the standard filtering methods.
Figure 5 shows three CA filtered “Fishing boat” images,



Noise ratio: 1% 10% 20%
Median 3× 3 12.77 12.44 12.05
Median 5× 5 11.31 11.15 11.07
Switching-I 12.77 12.44 12.05
Switching-II 13.44 13.10 12.66
Adaptive median 12.77 12.44 12.05
CA (von Neumann) 13.82 13.34 12.83
CA (Moore) 23.75 16.12 14.00

Table 1. PSNR values for different filters and noise
ratios for the “Cameraman” image.

Figure 2. Reconstructed “Cameraman” image with 10%
noise ratio. a) Noisy image b) Median 3 × 3 c) Median
5 × 5 d) Switching-I e) Switching-II f) Adaptive median
g) CA (Von Neumann) h) CA (Moore).

using a deterministic and random CA (figures a and b) and
a mirrored CA (figure c; explained below), respectively.

Noise ratio: 1% 10% 20%
Median 3× 3 28.49 27.74 25.70
Median 5× 5 25.04 24.86 24.48
Switching-I 31.81 30.11 26.79
Switching-II 34.25 30.98 27.08
PSM filter 32.07 29.84 27.86
Adaptive median 32.94 31.91 29.10
Deterministic CA 43.98 33.37 29.66
Random CA 46.46 34.55 30.64

Table 2. PSNR values for different filters and noise
ratios for the “Fishing boat” image.

Figure 3 shows the reconstructed gray scale “Lena” image
with a noise ratio of 20%. Here too, the median filter
results in a blurring effect. Switching-I, switching-II and
PSM impulse detectors are not able to detect the impulse
noise located in areas where gray levels are comparable
with impulse noise levels. The performance of the adaptive
median filter is comparable with other switching filters at
low noise levels. At higher noise levels, the performance
of the adaptive median filter is better than that of other

switching filters.

Figure 3. Reconstructed “Lena” image with 20% noise
ratio. a) Noisy image b) Median 3 × 3 c) Median 5 × 5
d) Switching-I e) Switching-II f) PSM filter g) Adaptive
median h) Deterministic CA.

Figure 4 shows the PSNR in dB for the different filters
and noise ratios for the “Lena” image. At low noise levels
the performance of the progressive switching median filter
is comparable with that of the CA filter, but at higher noise
levels the CA filter is better than the PSM filter.

Figure 4. PSNR values for different filters and noise
ratios for the “Lena” image.

In the fixed boundary CA as used so far, the update rule
is not applied to the cells at the boundary of the lattice,
so noisy pixels at the boundary of an image can never be
restored. In fact, it can introduce a border in the image, as
shown in figures 5a and b (full image) and figures 6a and b
(image detail). However, a mirrored CA solves this problem.



In a mirrored CA, an existing neighbor of a boundary cell
is “mirrored” into an otherwise nonexistent neighboring
cell, so the update rule can be applied as usual. So, for
example, to create a “left neighbor” for a cell in the leftmost
column of an image, its “right neighbor” is mirrored. Table 3
shows the image restoration results for a fixed boundary CA
(deterministic and random) and a mirrored CA. As the table
clearly shows, a mirrored CA improves the performance by
8 to 23 dB (depending on the noise level) compared with
the fixed boundary CA filters. Figure 6 shows the boundary
effects of fixed boundary and mirrored CA rules in a detail
of the top-left corner of the image.

Figure 5. Reconstructed “Fishing boat” image with 50%
noise ratio. a) Deterministic CA, b) Random CA, and c)
Mirrored CA.

Figure 6. Boundary effect of a) Deterministic CA, b)
Random CA, and c) Mirrored CA (detail of image cor-
ner) with a 50% noise ratio.

Noise ratio: 1% 10% 20%
Deterministic CA 22.70 22.36 21.84
Random CA 22.71 22.41 22.05
Mirrored CA 45.03 34.16 30.71

Table 3. PSNR values for fixed boundary and mirrored
CA filters for different noise ratios.

In summary, the presented results clearly show that it
is possible to construct simple cellular automata filtering
rules that outperform standard noise filtering methods in
several important ways. Furthermore, it is possible to make
variations to the CA rules to deal with additional issues,
such as blurring and boundary effects.

5. Conclusions

Our initial experiments with CAs for noise filtering are
encouraging. They show that it is possible to construct
good rule sets to perform common image processing tasks.
A 2-D cellular automaton with a very simple update rule
can be used as an efficient impulse noise filter in digital
images. In particular, for filtering salt and pepper noise in
a binary image, the CA based on a Moore neighborhood
performed better than the standard median filter, adaptive
median filter, and switching filters. For gray level images,
compared with a deterministic CA, a random CA performs
better for a detailed image. A mirrored CA solves the
fixed boundary problem. Our results are an extension of
and improvement over previous methods [5], [6] in that
we also considered gray scale images and not only binary
images, and tried several variants of the standard CA rule
for improved performance.

To improve performance even further, there are several
areas to investigate. For example, most CAs use identical
rules for all the cells in the lattice. An extension is to use
non-uniform CAs, that is, different rules can be applied at
different locations and also at different time steps depend-
ing upon local conditions of the image. We can also use
alternative neighborhood definitions, or, to get possibly even
better CAs, we could use an evolutionary algorithm to search
for good filtering rules. Finally, a very important feature of
the proposed method is its intrinsic parallelism, since it is
implemented as a cellular automaton where the individual
cells update in a synchronous manner. This provides the
potential (when implemented appropriately) to make the
proposed impulse noise filter method faster than other typical
filter algorithms.
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