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Introduction

Cellular Automata  (CA) are mathematical models of decentralized spatially extended 
systems. They consist of a large number of relatively simple individual units, or “cells”, 
which are connected only locally, without the existence of a central control in the system.
Each cell is a simple finite automaton that repeatedly updates its own state, where the 
new cell state depends on the cell’s current state and those of its immediate (local) 
neighbors. However, despite the limited functionality of each individual cell, and the 
interactions being restricted to local neighbors only, the system as a whole is capable of 
producing intricate patterns, and even of performing complicated computations. In that 
sense, they form an alternative model of computation, one in which information 
processing is done in a distributed and highly parallel manner. Because of these 
properties, CA have been used extensively to study complex systems in nature, such as 
fluid flow in physics or pattern formation in biology, but also to study information 
processing (computation) in decentralized spatially extended systems (natural or 
artificial). Here, we will give a brief overview of the different ways in which 
computations can be done with cellular automata.

The paper is organized as follows. First, the concept of cellular automata is introduced. 
Then some examples of specific computational tasks that can be performed with CA are 
presented. Next, different proofs of universal computation in CA are discussed. Then, an 
example of what is called “emergent computation” in CA is reviewed. Finally, some 
pointers to more information on cellular automata are provided.

Cellular Automata

A cellular automaton (CA) consists of a regular grid (lattice) of cells (automata), each of 
which can be in one of a finite number of states. At discrete time steps, all cells 
simultaneously update their states depending on their current state and those of their 
immediate neighbors (i.e., depending on the local neighborhood configuration of each 
cell). For this update step, all cells use the same deterministic update rule, which lists the 
new cell states for each possible local neighborhood configuration. This update process is
then repeated (“iterated”) for a certain number of time steps.

In the simplest case, the CA lattice is a one-dimensional array of cells (1D CA), where 
each cell can be either black or white (two possible states), and the local neighborhood of



a cell consists of the cell itself, the immediate neighbor to the left, and the immediate 
neighbor to the right (i.e., a radius of 1, or three cells total). So, there are 823   possible 
neighborhood configurations for a cell, since each of the three cells in the local 
neighborhood can be either black or white. Such a 1D, two-state, radius 1 CA is known as
an elementary CA (ECA). Of course many variations on this basic scheme exist, such as 
higher dimensional (2D, 3D, …) lattices, a larger number of states (>2), or larger 
neighborhood sizes (a radius of 2, 3, …). However, the basic principles (updating of cells 
based on local neighborhood configurations according to a given update rule) remain the 
same in all cases.

The example below shows one particular ECA update rule. The 8 possible local 
neighborhood configurations are listed in the first row (white is represented by a 0, and 
black is represented by a 1), and the new cell state for each neighborhood is given in the 
corresponding position in the second row.

   neighborhood: 111  110  101  100  011  010  001  000
   new state:     0    1    1    0    0    0    1    0

For this particular update rule, the three neighborhoods “black, black, white” (110), 
“black, white, black” (101), and “white, white, black” (001) are mapped into a black cell 
(1), and the other neighborhoods are mapped into a white cell (0). Of course the 0s and 1s
in the second row (the new cell states) could have been assigned differently, and there are

25628   ways of constructing an ECA update rule (since each of the 8 neighborhoods 
can be mapped into a 0 or a 1). The figure below shows a simple example of how cells in 
a CA lattice change their states given the above update rule. For example, the second cell 
in the lattice has a local neighborhood configuration of “white, black, black” (011), and 
according to the given rule will be white (0) at the next time step (first arrow). The fifth 
cell has a local neighborhood configuration of “white, white, black” (001), and thus will 
be black (1) at the next time step (second arrow). Similarly, all cells are changed to their 
new state simultaneously according to the same update rule given above.

In case of a finite lattice, as in the example above, we also need to specify boundary 
conditions. In this case, periodic boundary conditions are used, i.e., the lattice is 
considered to be circular. Thus, the first and last cells in this array are each other’s 
neighbor, and therefore the first cell has a local neighborhood configuration of “white 
(last cell), white (cell itself), black (second cell)” (001), and will become black (1) at the 
next time step according to the given update rule. Alternatively, fixed boundary 
conditions can be used, where an additional cell is placed on either side of the lattice with
a fixed cell state (i.e., these boundary cells are not updated).



Depending on which one of the 256 ECA update rules is used, different behaviors (or 
dynamics) can be observed when iterating the CA. The figure below gives examples of 
so-called space-time diagrams for four different ECA. In these diagrams, the CA lattice is
shown horizontally, while time is going down the page. In other words, the first row in 
each diagram is the CA lattice at the initial time step t=0 (in these examples, the CA 
lattices are initialized randomly, i.e., for each cell a state, black or white, is chosen at 
random). The second row is the updated lattice at time step t=1, and so on for each next 
row. These space-time diagrams show 100 cells across (with periodic boundary 
conditions), for 100 time steps. Clearly, the four different update rules give rise to very 
different kinds of dynamics.

Computation in Cellular Automata

It is possible to use the patterns that form in these cellular automata dynamics to perform 
computations. Of course not all CA, or all patterns they produce, can be said to perform 
computations, but sometimes it is possible to construct a specific CA update rule to 
perform a certain computational task. Some examples are given next.

Formal language recognition
Smith used CA as formal language recognizers [1]. In particular, one-dimensional, radius 
1 “bounded” CA were studied, i.e., CA with two special (fixed state) boundary cells on 
either end of the lattice. Smith proved that the class of languages that can be recognized 



by such CA is the class of context-sensitive languages. Some specific examples he 
included are the context-free language of palindromes (i.e., words that are the same when
read from left-to-right and from right-to-left), and the context-sensitive language

}1|{ mcba mmm . For both cases, he showed the construction of a bounded CA that 
recognizes one of these languages in linear time. An input word, such as aabbcc, is given 
as the initial configuration to the CA, and it will then decide in linear time whether the 
input belongs to the language or not. The decision is made by using one particular cell as 
the “answer cell”. If an input word of length n belongs to the language, this particular cell
will be in the “accepting” state after n time steps (iterations), otherwise it will be in the 
“rejecting” state. It is possible for the CA to make this decision in linear time, because it 
can process the symbols in the input word in parallel.

Arithmetic
In [2], one-dimensional “filter automata” were used to perform arithmetic. The difference
between filter automata (FA) and regular CA is that in FA the cells are updated from left 
to right, instead of simultaneously. So, when updating a particular cell, the new cell states
of neighbors to the left and current cell states of neighbors to the right are considered for 
the local neighborhood configuration. In this class of automata, often “soliton-like” 
structures (patterns) can be observed, i.e., propagating periodic structures that can pass 
through each other without destroying each other, but only shifting each other’s phase. 
Using these types of structures, in [2] a simple “adder” was constructed. Two (binary) 
numbers are given as input in the initial configuration of the FA, and after a certain 
number of iterations the lattice will contain the sum of these two numbers. Similar 
arithmetic operations (such as multiplication) can also be implemented in an FA this way.

Random number generation
Wolfram gives an example of an ECA that can be used as a pseudo random number 
generator [3]. For this particular ECA, the state values that are attained by one particular 
cell in the lattice seem to form a stream of bit values that is indistinguishable from a 
random stream. In other words, for a large enough lattice, one particular cell in this CA 
can function as a generator of (pseudo) random bit values. Since the description of an 
ECA is very simple and concise, this can of course provide many useful practical 
applications, for example in the area of cryptography, as suggested by Wolfram.

Image processing
Another, perhaps more practical, task that can be performed with CA is that of image 
processing. Suppose an image is given as input to a 2D CA, where each cell in the lattice 
corresponds to a pixel in the image. In other words, for black and white images, if a pixel 
in the image is white, the corresponding cell in the CA is initialized to white, and 
similarly for black pixels. For gray-scale images, we can use for example 256 states in 
the CA, each state corresponding to a particular gray-scale level. In [4], two CA update 
rules are given for two different image processing tasks: noise filtering and edge 
detection. It is then shown that using these CA rules, it is indeed possible to remove noise
from, or to detect edges in, an given image.



Universal Computation in Cellular Automata

The examples above show how CA can be used for very specific computational tasks. 
However, it has been proved that, in principle, CA can perform any computational task. 
In other words, they are capable of universal computation. One relatively straightforward 
way of proving this is by showing that a CA can, in principle, simulate any given Turing 
machine. This was done for two-dimensional CA in [5]. Obviously, from this it follows 
that it is possible to construct a 2D CA that simulates a universal Turing machine as well.

However, the actual construction of such a CA, including the correct initial configuration,
would be very complicated. Therefore, the next natural question is: “What is the simplest 
CA that can perform universal computation?” In [6], a one-dimensional, 7-state, radius 1 
CA was constructed that can simulate a Turing machine. And finally, after an early 
conjecture by Wolfram, it was even proved that there is one elementary CA (known as 
rule 110) that is capable of universal computation [7]. So, even the simplest version of a 
CA is, in principle, computationally as powerful as any other computing device!

One early, but entirely different, proof of universality in CA was provided using a famous
two-dimensional CA known as the “Game of Life”. This CA was originally invented by 
Conway, and is described in [8]. In this CA, there are only two possible states: “dead” 
and “alive”. The update rule is also simple. If a cell is alive, it remains alive if exactly 2 
or 3 of its neighbors are alive, otherwise it dies. If a cell is dead, it remains dead unless 
exactly 3 of its neighbors are alive, in which case it becomes alive. The neighborhood of 
a cell consists of the 8 cells directly surrounding it (in a 2D lattice). However, despite this
simple rule, the CA shows complicated behaviors and intricate structures, including 
propagating structures called “gliders”. These gliders are small (consisting of 5 alive 
cells) periodic structures, with a periodicity of 4 time steps, which are displaced one cell 
horizontally and vertically after one period. So, over time, these structures are propagated
through the lattice, and interact with each other upon collision, either annihilating one or 
more of them, or changing direction, etc. Furthermore, there exist other structures that 
produce gliders (“glider guns”), destroy them (“eaters”), delay them (“delayers”), or 
make them change direction. As it turns out, these gliders and other structures can be 
used in such a way as to simulate any logical function, in particular AND, OR, and NOT 
gates. Since any logical system containing such functions is universal, it follows that the 
“Game of Life” is also universal, i.e., capable of universal computation.

Emergent Computation in Cellular Automata

In the examples given above of computation in CA (specific or universal), a particular 
CA update rule and a corresponding initial configuration were constructed, or at least it 
was shown that such a construction is possible in principle. However, for most 
computational tasks of interest, it is very difficult to construct a CA update rule or it is 
very time consuming to set up the correct initial configuration. A very different approach 
was taken by Mitchell et al. in [9-11], where a genetic algorithm was used to evolve a CA
rule to perform a specific computational task.



A genetic algorithm (GA) is a search algorithm based on the principles of natural 
evolution (see the introduction to evolutionary computation in this volume). It can be 
used to search through the space of possible CA rules to try to find a CA that can perform
a given computational task. The specific task that Mitchell et al. originally considered is 
density classification. Consider one-dimensional, two-state CA. For any initial 
configuration (IC) of black and white cells, we can ask: “Are there more black cells or 
more white cells in the IC?” Note that for most “computing systems” (including humans),
this is an easy question to answer, as the number of black and white cells can easily be 
counted and compared. However, for a CA this is a difficult task, since each individual 
cell in the lattice can only check the states of its direct neighbors, and none of the cells 
can have information of the global state of the CA lattice. So, the question is whether 
there exists a CA update rule that can decide on the density of black cells (smaller or 
larger than 0.5) for any IC. In particular, if a given IC contains more black cells (density 
>0.5), then the CA should settle down (within a certain maximum number of iterations) to
a configuration of all black cells and remain in that state. Otherwise (density <0.5), it 
should settle down to all white cells.

A genetic algorithm was used to search through the space of all one-dimensional, two- 
state, radius 3 CA update rules (of which there are 38128 104.32  , i.e., too many to 
perform an exhaustive search). The way the different CA were evaluated during the 
search is as follows. A set of 100 random ICs is generated, and the CA being evaluated is 
iterated for M time steps on each of these. The lattice size was chosen to be L=149, and 
M was set to roughly 2L. The fraction of ICs on which the CA gives the correct answer 
(i.e., it correctly settles down to all whites or all blacks) is taken as the “fitness” of the 
CA, a measure of how well it performs the density classification task. Many runs of the 
genetic algorithm were performed, and in the end the best CA (the one with the highest 
fitness value) over all these runs was taken as “the solution”. Two space-time diagrams of
this “best” density classification CA are shown below. On the left the (random) IC 
contains more white cells, and on the right it contains more black cells. However, in both 
cases the CA correctly classifies the density of black cells. (The gray areas are alternating



black and white cells, or a “checkerboard” pattern.) Periodic boundary conditions are 
used.
So how does this CA actually perform the density classification task? As is obvious from 
the space-time diagrams, the CA dynamics very quickly (after just a few initial time 
steps) settles down into a collection of very regular patterns, in particular regions of all 
white, all black, or checkerboard, with sharp boundaries between these regular regions. 
Furthermore, these boundaries move through the lattice at a certain velocity, and they 
interact with each other, creating new or destroying existing regular patterns and 
boundaries. So, it seems that the CA is using these patterns that emerge in its space-time 
dynamics to store, transfer, and process local information (local densities), eventually 
coming to a global decision about the overall density of the IC.

To appreciate the information processing, or computation, in this CA better, consider the 
two space-time diagrams shown below. In both cases, the IC contains one “block” of 
consecutive white cells, and one “block” of consecutive black cells (since periodic 
boundary conditions are used, the white region wraps around and thus forms one 
continuous block). At the boundary between the white (W) region and the black (B) 
region, a checkerboard (#) pattern is formed, and two boundaries are created (W# and 
#B), which travel in opposite directions but at the same velocity. At the boundary 
between the black and white regions, this boundary (BW) persists and remains in the 
same location over time (i.e., the vertical boundary). In the figure on the left, the original 
white block in the IC is larger than the black block, and therefore the #B boundary 
reaches the BW (vertical) boundary well before the W# boundary does. When the #B and 
BW boundaries meet, the black region and the two boundaries themselves are destroyed, 
and a new boundary (#W) is created that travels back in the same direction as the original
W# boundary, but with a higher velocity. So, eventually the new #W boundary catches up
with the existing W# boundary, and upon collision they annihilate each other and the 
checkerboard region, leaving the entire CA lattice in an all white state. As can been seen 
in the figure on the right, exactly the opposite happens when the white block in the IC is 
smaller than the black block. So, in both cases the density of black cells in the IC is 
classified correctly by the CA (<0.5 on the left and >0.5 on the right, with the correct 
corresponding answers of all white and all black, respectively).



Going back to the first pair of space-time diagrams where random ICs were used, it can 
be seen that this “strategy” of creating checkerboard patterns and using interacting 
boundaries, as just explained, is used at different time- and length-scales. Local 
information about densities in small parts of the lattice is stored in patterns of all white, 
all black, or checkerboard, and the boundaries between these regions transfer this 
information to other parts of the lattice, where the information is processed through 
interactions of these boundaries. Decisions about local densities are made this way, and 
are propagated to other parts of the lattice, until finally a global decision about the overall
density of the IC is made. Since the CA makes use of these patterns that (spontaneously) 
emerge in its dynamical behavior, this type of information processing is generally 
referred to as emergent computation [12-14].

The above explanation of emergent computation in the evolved CA is a rather informal 
argument. However, the mechanisms of emergent computation in CA have been studied 
more thoroughly and have been formalized in a mathematical framework in [15,16], 
where a concise model has been developed based on the notion of these propagating and 
interacting boundaries. In fact, this model (which is a higher-level description of the 
dynamics of the CA) can be used to make accurate predictions about the CA’s behavior 
and computational performance. Furthermore, it can be used to better understand the 
actual evolution (by the genetic algorithm) of emergent computation in CA.

More Information

Cellular automata were originally introduced by von Neumann after a suggestion by 
Ulam [17,18]. They were made popular by a series of articles by Gardner on the “Game 
of Life” in Scientific American (see [19] for an overview), but were more or less 
neglected otherwise. In the 80s, with the increase in computing power, research on CA 
revived again, and Wolfram was one of its pioneers (see [20] for a collection of his papers
on CA). Since then CA have been used in many different areas and as models of many 
different systems. For a more elaborate overview of computation in cellular automata, 
which is only briefly presented here, see the chapter on this topic in [21]. And finally, 
many CA resources are available on the internet. A good starting point is cafaq.com, 
and any websearch on the topic will result in numerous additional pages. For more 
information on evolving cellular automata with genetic algorithms and emergent 
computation in CA, with links to downloadable electronic versions of publications 
including [9-13,15,16], please visit www.santafe.edu/projects/evca.
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