
A Genetic Algorithm For Finding Good Balanced

Sequences In A Customer Assignment Problem

With No State Information

Wim Hordijk,
SmartAnalytiX.com,

Email: wim@WorldWideWanderings.net

Arie Hordijk,
Mathematical Institute, Leiden University,

Email: arie-hordijk@xs4all.nl

Bernd Heidergott (Principal corresponding author),
Tinbergen Institute,

and Department of Econometrics and Operations Research,
Vrije Universiteit Amsterdam,
Email: bheidergott@feweb.vu.nl

Abstract

In this paper we study the control problem of optimal assignment of

tasks to servers in a multi-server queue with inhomogeneous servers. In

order to improve the performance of the system, we use a periodic deter-

ministic sequence of job assignments to servers called a billiard sequence.

We then use a genetic algorithm (GA) for computing a near-optimal bil-

liard sequence. By means of a recent result obtained in the area of ordinal

optimization, we show that the solution found by the GA belongs to the

top 1% of possible choices for such a billiard sequence. As illustrated by

numerical examples, not only is the performance under a billiard sequence

better than that of the corresponding randomized policy, the optimal bil-

liard sequence even outperforms the billiard implementation of the optimal

randomized policy. The framework we introduce in this paper is suitable

1

for general optimization problems over (periodic) deterministic decision

sequences. Given the significant performance improvement that a switch

from randomized policies to billiard sequences yields, this framework is of

importance in practical applications. Finally, we show that constrained

or multi-objective optimization can be dealt with in our framework as well.

Keywords: Control, Multi-Server Queue, Billiard Sequence, Genetic

Algorithm, Ordinal Optimization

1 Introduction

Many real-world problems in the area of operations research, engineering, and

computer science can be described by stochastic models that involve decision

making. The main example in this paper will be the assignment of jobs to het-

erogeneous servers in a multi-server queuing system. Here, the decisions are on

sending jobs to servers so that the overall stationary waiting time of jobs is min-

imized. This type of decision making can be formalized within the framework

of Markov decision processes (MDP), see, e.g., Feinberg and Schwartz [14] and

Puterman [26].

Typically, dynamic programming is used in MDP for computing optimal

policies. This results in high-performance policies that depend on the state of

the system. However, unfortunately the identification of effective policies via

dynamic programming is often impractical, both analytically and numerically,

for several reasons. First, the dimensionality of the state space can be very

high so that standard dynamic programming algorithms such as value iteration

or policy iteration for computing optimal policies become computationally too

demanding. Second, many problems have constraints so that the optimal policy

is usually found within the class of randomized policies, as opposed to the class

2

of deterministic policies, see e.g. [1]. This provides another reason why standard

techniques fail, since they are not tailored to finding the optimal randomized

policy. Third, even if powerful computers are used to solve difficult optimiza-

tion problems, potentially overcoming the previous two issues, the drawback is

that the resulting policy often does not have nice structural properties and is

difficult to understand and implement, see [7]. These three issues form a seri-

ous bottleneck that is currently holding back the widespread implementation of

MDPs in many decision support systems. Hence, there is a need for randomized

policies that have good performance and yet are simple to understand and im-

plement. For this reason we will, in the following, compute state-independent,

deterministic decision sequences representing randomized policies.

We consider, for illustrative purposes, a multi-server queue with J hetero-

geneous servers, and let aj denote the decision that a job is sent to server j,

for 1 ≤ j ≤ J . Let A = {aj : 1 ≤ j ≤ J} denote the alphabet. An admissible

decision sequence is now given by an infinite word α over the alphabet A, i.e.,

α ∈ AN. We call a sequence α ∈ AN periodic with period n if, apart from an

initial string of at most n− 1 letters, α is the repetition of a string of n letters

from A. The problem we will treat in this paper is that of finding an optimal

deterministic sequence α∗ such that

α∗ = arg min
α∈A

E[W (α)], (1)

where E[W (α)] denotes the steady-state total mean waiting time of customers

for control sequence α. Observe that the system may become unstable for

certain α ∈ A as too much traffic may be sent to (some) servers. Since we

are minimizing the mean steady-state waiting times, and sequences α that lead

to instability will lead to infinite mean steady-state waiting times, including

sequences leading to an inst-able system will not change the solution of (1).

3

This way dealing with a constraint optimization problem can be avoided.

To compare the solution of the above optimization problem with a stationary

randomized policy, we consider the space of probability vectors ~p = (p1, . . . , pJ),

where pj denotes the probability of sending an incoming customer to server j,

i.e., the probability of choosing action aj . We will then consider the random-

ized version of (1), i.e., the problem of finding an optimal randomized policy

sequence:

~p∗ = arg min
~p∈[0,1]J ,

∑
j pj=1

E[W (~p)], (2)

where E[W (~p)] denotes the stationary total mean waiting time of customers for

probability vector ~p. We will also find the optimal deterministic sequence with a

bounded periodicity, since a decision sequence with a large periodicity becomes

difficult to communicate and impractical to implement, see point three above.

We denote the set of admissible decision sequences with periodicity n by A(n).

With this notation we will find the optimal periodic sequence of predefined

periodicity:

α∗(n) = arg min
α∈A(n)

E[W (α)], (3)

for n ∈ N.

When there are only two decisions to choose from, i.e., A = {1, 2}, a partic-

ularly nice representation of the density vector (p, 1 − p), for p ∈ [0, 1], exists,

called a balanced sequence. In [9], stochastic approximation is applied for finding

the optimal balanced sequence for control of a call-center. Unfortunately, [9]

failed to establish unbiasedness of the gradient estimator. Therefore, we will

develop in this paper a novel approach, based on the application of a genetic

algorithm (GA), for finding an optimal representation of a deterministic control

sequence over an alphabet with more than two letters.

This paper is organized as follows. In Section 2 we provide a brief introduc-

4

tion to billiard sequences. The genetic algorithm (GA) as used in our framework

is described in Section 3. In addition, we explain how a statistical test assessing

the quality of the solution found by the GA is used. In Section 4 we describe

the multi-server simulation model we use in our experiments. Section 5 then

presents the results of the GA-optimization for the multi-server example, with

additional results showing how constraints and multiple objectives can be dealt

with as well. An interesting observation is that in the numerical experiments

E[W (α∗)] < E[W (α∗(n))] < E[W (~p∗)], for n small. More specifically, our re-

sults show that asking for periodic polices with a small periodicity may have

a significant (negative) impact on performance. Finally, Section 6 summarizes

the main results and conclusions.

2 Billiard Sequences

For an infinite sequence U = (u1, u2, . . .), with ui ∈ {1, . . . , J}, denote the

number of elements equal to j in the sub-sequence of length n beginning at the

k-th element of U by

s(k, n; j) =

k+n−1∑
ji=k

1(ui = j), k ≤ n.

We say that U = (u1, u2, . . .) has density ~p = (p1, . . . , pJ), with pj ∈ [0, 1] for

1 ≤ j ≤ J and
∑
j pj = 1, if

lim
n→∞

s(1, n; j)

n
= pj

for 1 ≤ j ≤ J , provided the limit exits. If U has density ~p, then the asymptotic

frequency of occurrences of value j in U is pj . Moreover, it follows for k = 0, 1, . . .

5

that

lim
n→∞

s(k, n; j)− npj
n

= 0.

Intuitively, a small maximal absolute deviation between s(k, n; j) and npj means

that the values {1, . . . , J} are regularly distributed with density ~p, a desirable

property for U . In fact, it can be shown that for every density ~p there exists U for

which the maximal deviation of |s(k, n;)−npj | is smaller than one for 1 ≤ j ≤ J .

Such sequences are called regular. Following [2], for the special case J = 2, a

sequence of ones and zeros s is called balanced if the difference in the number

of ones for sub-sequences of the same length is at most one. Unfortunately,

for a given density over an alphabet with three or more letters, deterministic

sequences with appropriate densities will, generally, not be balanced. Indeed,

the problem of constructing a sequence with given densities such that it is

balanced in all letters, is a hard combinatorial problem for J > 2 letters.

One way of constructing a deterministic sequence with density ~p is by con-

structing a billiard sequence, see [8, 5]. The construction of a billiard sequence

is best explained by the following thought experiment. Imagine a billiard “ta-

ble” consisting of the J-dimensional cube [0, 1]J with sides numbered 1, ..., J

such that opposite sides have the same number. Given an initial position

x = (x1, ..., xJ) ∈ [0, 1]J and an initial velocity vector (−p1, ...,−pJ) of a billiard

ball, now construct the sequence U = (u1, u2, ...) where the ui are the consecu-

tive numbers of the sides hit by the billiard ball, breaking ties in an unique way.

Then U is called a billiard sequence and by construction the density of U is ~p.

The sequence produced by this algorithm depends on the initial value, but in

our experiments we keep this initial value fixed at x = 0. The billiard sequence

algorithm can then be implemented by starting with ki = 0, i = 1, . . . , J , and

at each step choosing that symbol i for which (x+ ki)/pi is minimal (over all J

such values), and increasing the corresponding ki by one. If there is more than

6

one i for which (x+ki)/pi is minimal, the smallest such i is chosen to break the

tie. This is then repeated for the length of the desired sequence. It is, however,

worth noting that one could search for “good” initial values x, i.e., search for a

value for x that gives the most “balanced” sequence. For the sake of simplicity

and efficiency, we have not included this in our algorithm (i.e., we always use

x = 0).

Example 1. Let ~p = (1/3, 2/3) and suppose that we want to find a billiard

sequence of length six. We initialize k1 = 0 and k2 = 0, and compute in each

step ki/pi, for i = 1, 2. In case of a tie, we choose i = 1. Table 1 shows the

result of the algorithm.

k1 k2 k1/p1 k2/p2 billiard seq.
1 0 0 0 0 1
2 1 0 3 0 12
3 1 1 3 1.5 122
4 1 2 3 3 1221
5 2 2 6 3 12212
6 2 3 6 4.5 122122

Table 1: The algorithm for constructing a billiard sequence for ~p = (1/3, 2/3)
of length six.

In [23] it is shown that for rational densities ~p, there exists a periodic billiard

sequence with these densities which minimizes the total unbalance.

Remark 2. For any p ∈ [0, 1] and φ ∈ R a balanced sequence U = (u1, u2, . . .)

of density p is obtained by putting

uj = bjp+ φc − b(j − 1)p+ φc for j = 1, 2, . . . ,

where bxc is the largest integer smaller than or equal to x. Sequences constructed

in this way are also called lower bracket sequences. Note that the bracket se-

quence is only defined on two letters. Moreover, for an alphabet of two letters the

7

billiard sequence of given density becomes the bracket sequence with that density,

and it is always balanced.

Balanced sequences have been studied for a long time (see, e.g., [25]) and

many properties were derived, but this was not in the context of optimal control.

However, in [17] it was proved for a specific admission control problem that the

optimal control sequence U = (u1, u2, . . .) is within this subset of sequences with

“good balance”. Subsequently, control by such sequences have been applied to

more scheduling, admission, and routing problems in the area of queuing and

discrete-event systems, see, for example, [4, 6, 2, 3, 28].

Using the concept of multimodularity, [5] gives an overview of control prob-

lems for which optimality of such sequences follows. However, quite a number

of assumptions and specific types of control policies were needed to apply the

concept of multimodularity. First it was used for admission control and then

extended to some specific routing and/or polling problems. In this paper we

apply these sequences with “good balance” to problems which do not fall within

the framework for which multimodularity was established in [5]. Therefore we

do not know a priori whether the optimal control sequence is within the subset

of sequences with “good balance”. From a practical point of view, however, this

poses no restriction, as our GA approach can be applied in general. Hence, the

effectiveness of a billiard sequence in controlling a given system can be easily

investigated through numerical experiments.

Finding optimal billiard sequences is a hard problem. The main reason be-

ing that standard optimization algorithms cannot be applied to the problem.

To see this, note that typical standard optimization algorithms have a part,

called the exploitation phase, where designs are compared to designs close to

the candidate solution. Unfortunately, there is no direct interpretation of “close-

ness” for billiard sequences. Consider, for example, a billiard sequence over two

8

letters and let p = (p1, p2) = (1/3, 2/3) be the candidate solution for the opti-

mal routing. This probability vector can be represented by a billiard sequence

(1, 0, 0, 1, 0, 0, . . .), which is of periodicity 3. Introducing a small change in p, for

example, changing p to p̂ = (1/3 + 1/10, 2/3− 1/10) = (13/30, 17/30) will lead

to a billiard sequence with period length 30. For example, in a recent paper,

stochastic optimization techniques have been applied to finding an optimal bal-

anced sequence [9], but the authors failed in establishing the unbiasedness of the

estimator for the sensitivity of the fitness function with respect to the routing

probability. The main reason for this is the above illustrated ill behavior of

the length of the period of a billiard sequence with respect to small changes in

the rates. To overcome this obstacle, we have developed the genetic algorithm

based approach presented in the following section.

3 The Genetic Algorithm

A genetic algorithm (GA) [19, 15, 24] is a stochastic search method that is mod-

eled after natural evolution. The idea is to maintain a population of candidate

solutions to a given (combinatorial) optimization problem, and to create new

“generations” of candidate solutions by applying selection and recombination

operators to the current population. This way, better and better solutions are

“evolved” over time. GAs are particularly suitable for optimization problems

for which there is no analytical solution or efficient (polynomial-time) algorithm

available, and they have been applied successfully to many real-world optimiza-

tion problems to find good approximate (near-optimal) solutions, including for

problems closely related to the one investigated here [31, 30].

In a GA, the candidate solutions in the population are represented by a

suitable “genetic encoding”. A fitness function is then used to assign fitness

values to the individuals in the current population. The fitness function is

9

determined by the given optimization problem, and calculates a measure of

how well a candidate solution solves the given problem. The better a solution,

the better its fitness value (i.e., higher for maximization problems, lower for

minimization problems). This way, individuals in the population can be directly

compared to each other on the basis of their fitness. The initial population in a

GA is usually created at random.

In our framework, the optimization problem is that of minimizing the average

waiting time in a multi-server queuing system. Individuals are encoded by

a density vector ~p = {p1, p2, . . . , pJ} with pj ∈ [0; 1] and
∑
j pj = 1. Our

fitness function translates such a encoding into an assignment policy, and then

simulates a multi-server queuing system with J servers and with pre-defined

arrival and service times (details on the simulation model are given in the next

section). The fitness is then calculated as the average waiting time per arriving

customer (or job). We use two variants of our fitness function. In the first

version a density vector ~p is converted into a billiard sequence as described in the

previous section. This billiard sequence is then used to assign arriving customers

to servers, i.e., if the ith symbol in the billiard sequence is j, then the ith

arriving customer is assigned to server j. This corresponds to problem (1) in the

introduction. In the second version, the densities ~p are used directly to randomly

(and independently) assign arriving customers to servers with probabilities pj .

This corresponds to problem (2) in the introduction. So, in both variants we

optimize a density vector ~p which represents an assignment policy to minimize

the average customer waiting time.

Once the fitness values of all individuals in the current population have been

calculated, these individuals are then selected to act as “parents” to create the

next generation of candidate solutions. Individuals in the current population

have a probability of being selected that is proportional to their fitness value

10

(relative to the rest of the population). In other words, individuals with a

relatively “good” fitness value (i.e., low, in our case) will be allowed to con-

tribute their genetic material to the next generation more often (on average)

than individuals with a relatively “bad” (high) fitness.

For the selection operator we use a combination of elitism and tournament

selection. With elitism, the best E individuals in the current population are

copied unchanged to the next generation. With tournament selection (to fill

up the rest of the next generation), in each round two individuals are selected

at random from the current population (regardless of fitness value), and with

probability pt the better of the two individuals “wins” the tournament and is

selected to act as a parent. With probability 1− pt the less fit individual wins

the tournament and is selected. Note again that since we are dealing with a

minimization problem (average waiting time), “better” means a lower fitness

value. Note also that this selection process is with replacement, so “good”

individuals will (on average) be selected more often to act as parents, and “bad”

individuals might not get selected at all.

Once two parents are selected this way, they are allowed to create “off-

spring”. To do this, their genetic material is recombined through crossover.

For the crossover operator we use one-point crossover on the density vectors.

First, a random crossover point is chosen somewhere between the first and last

densities. Then, the densities after the crossover point are swapped between

the two parents, creating two offspring individuals. Note that this does not

necessarily result in valid offspring density vectors (they may not sum up to

one). To remedy this, after each crossover event, the offspring density vectors

are renormalized. As a simple example, consider the two parent density vectors

~p1 = {0.1,0.1,0.1,0.1,0.6}

~p2 = {0.2, 0.2, 0.2, 0.2, 0.2}

11

and suppose the crossover point was (randomly) chosen to be between the second

and third density. The two offspring individuals will then look like

~p′1 = {0.1,0.1, 0.2, 0.2, 0.2}

~p′2 = {0.2, 0.2,0.1,0.1,0.6}

which are then renormalized to

~p′1 = {0.1250, 0.1250, 0.2500, 0.2500, 0.2500}

~p′2 = {0.1667, 0.1667, 0.0833, 0.0833, 0.5000}

(rounded to four decimals, for clarity).

Finally, the newly created children are subjected to random mutations. In

each new offspring density vector, a small random value (drawn uniformly from

[−0.05; 0.05]) is added to a randomly chosen density (out of the J densities).

Here too, the density vector is renormalized after a mutation event.

These selection-crossover-mutation steps are repeated until a new population

is filled up with offspring, constituting the next generation. This whole process

is then repeated for a given number of generations. To summarize, our GA can

be described as follows.

1. Initialization: Create an initial population (of size P) of density vectors

at random (from a uniform distribution).

2. Fitness: Calculate the fitness of each individual (using the multi-server

simulation model).

3. Selection: Copy the best E individuals directly to the next generation

(elitism) and use tournament selection with probability pt to select P −E

parents.

4. Crossover: From each next pair of selected parents, create two offspring

12

individuals using one-point crossover (and renormalization).

5. Mutation: Add a small random value (from [−0.05; 0.05]) to a randomly

chosen density in each newly created offspring individual and renormalize.

6. Repeat: Repeat steps 2 to 5 for a given number G of generations.

The particular parameter values used in our GA implementation are a pop-

ulation size of P = 30, an elite size of E = 4, a tournament selection probability

of pt = 0.9, and a number of generations of G = 50.

Of course there are many ways in which the various GA operators and the

corresponding parameter values could have been implemented and chosen. And,

often, the search performance of the GA depends largely on these choices. How-

ever, unfortunately there is not much theory yet about how to relate the type or

difficulty of a given problem to the particular GA implementation that is best

suited for that problem. To a large degree, it comes down to trial and error,

and experience with previous (similar) problems. There exist basic guidelines

[11, 13], but these are also mostly empirically based.

However, after some experimentation the above described implementation

and parameter values seem to give the best overall results for our problem.

In the results section below we present a parameter sensitivity analysis that

indicates that the chosen parameter values are indeed in an optimal range. In

[12] an alternative GA implementation for a similar problem is described.

The overall running time of a GA is mostly determined by the fitness eval-

uations, and thus scales linearly with the population size and the number of

generations. Memory requirements are minimal, as the algorithm mostly needs

to store the current population of individuals and their fitness values.

While a GA is a widely used optimization algorithm, one of its main draw-

backs is the fact that it is typically not possible to establish convergence of

the algorithm. The latter points means that, from a practical point of view,

13

there are no strict guidelines on when to terminate the algorithm. Of course

this is a problem of any heuristics-based algorithm, and providing measures for

the quality of the found solution is imperative for acceptance of any GA-based

analysis. Fortunately, this drawback can be overcome by using arguments from

ordinal optimization [18]. The basic idea is as follows. Rather than considering

~p as a continuous density vector, assume that ~p ∈ Θ ⊂ [0, 1]J with Θ being a

discrete set such that ~p ∈ Θ implies
∑
j pj = 1. We choose Θ large enough so

that Θ becomes a ”dense” subset of [0, 1]J . The basic idea of ordinal optimiza-

tion is that if we are interested in finding one of the best 1% densities in Θ,

then, independent of the size of Θ, a random sample of 104 densities, where the

sampling is done uniformly, will with probability of almost one contain one of

the top 1% densities. So, the fitness of the best solution found in Θ can be used

as a benchmark for testing the quality of a GA solution, i.e., the result obtained

by the GA should have at least the fitness of the best fitness of the random

sample. More specifically, as shown in Theorem 1 of [27], the type II error of

the statistical test on ”H0: the GA solution belongs to the top 1% solutions”

and ”H1: the GA solution does not belong to the top 1% solutions” has a type

II error of at most 0.05 %; in words, the probability of wrongly accepting the

GA solution as one of top 1 % is no larger than 5 %. For details we refer to

[27]. For an application of ordinal optimization to generic algorithms, we refer

to [29].

4 The Multi-Server Simulation Model

As a practical example, we study a multi-server queuing system with J heteroge-

neous servers. We have implemented this system as a simulation model and the

mean stationary waiting time as the fitness function for the genetic algorithm.

The example is taken from [16] where an approximation for the stationary mean

14

waiting time in a multi-server with general inhomogeneous service time distri-

butions is provided. Note that if complete information on the workloads in

the queues is available, then the policy which sends the arriving customer to

the queue with shortest waiting time (SWP) is known to be of good quality;

see [10]. If only the queue sizes are known, then the structure of the optimal

policy is generally not known, see [20]. In this paper we suppose that there is

no information on the actual loads of the various servers, hence only open loop

policies may be considered. In [22] a similar model is analyzed and bounds on

the performance of billiard sequences are derived. In Section 5.5 later on in the

text we will perform a comparison with other heuristics.

We assume that there are J = 10 servers each with a lognormal service time

sj ∼ LogNorm(µj , σ) with the following parameter values: µ1 = 1.0, µ2 = 1.2,

µ3 = 1.4, µ4 = 1.6, µ5 = 1.8, µ6 = 2.0, µ7 = 2.2, µ8 = 2.4, µ9 = 2.6, and

µ10 = 2.8, and σ = 0.5. The average number of customers served per time unit

is thus
10∑
j=1

1

eµj+σ2/2
= 1.55.

New customers arrive according to a Poisson process, i.e., the waiting time

to the next arrival event te ∼ Exp(λ) with λ = 1.25 (on average 1
λ = 0.8 arrivals

per time unit). Customers are assigned to queues upon arrival according to

a given strategy, and are serviced according to a FIFO discipline. As already

mentioned above, we compare two possible assignment strategies: (1) billiard

sequences and (2) random assignment, each according to a given density vector

~p. We then apply the GA for solving optimization problems (1) and (2). So,

the fitness of a candidate solution ~p is the average waiting time per customer in

the simulation model using the densities ~p in the assignment strategy. We use

100,000 arrival events in the simulation model to calculate these average waiting

times. In the results below, we show that this is enough to reach a stationary

15

distribution, while still allowing the GA to run fast enough (on the order of

minutes). The overall running time of the GA scales linearly with the number

of arrival events used in the simulation model.

Note that the analytical approximation provided in [16] breaks down for this

particular model, as it generates too many unstable solutions while trying to

find the optimal solution, and therefore does not converge to a correct solution.

Thus, it is necessary to use heuristic optimization techniques such as a genetic

algorithm. We implemented the GA and the simulation model (as described

above) in the C programming language, and performed our experiments on a

Linux platform. We next describe the results of our heuristic approach.

5 Results

5.1 Billiard sequences vs. randomized policies

Using the GA as described in Section 3 to minimize the average waiting time in

the simulation model as described in Section 4, using either billiard sequences

or random assignments, gives the results as shown in table 2. First, we ran the

GA 20 times on each assignment strategy and recorded the best fitness value

in the last (50th) generation. Then, for each assignment strategy we took the

best GA solution (density vector) found in these 20 runs, and recalculated its

fitness value 20 times (i.e., run the simulation model 20 times with the given

solution). The table shows the average and standard deviation of these fitness

calculations for both assignment strategies, averaged over the 20 runs (left)

and averaged over the best solution’s 20 fitness recalculations (right). Clearly,

billiard sequences are the better strategy, with the average waiting time per

customer for random assignments being more than twice as large as that for

billiard sequence assignment, a highly significant difference with a p-value of

16

less than 10−15. Furthermore, given the extremely low standard deviations,

the GA is very robust in performance, both over different runs as well as over

different fitness calculations for the same solution.

Runs Best solution
Billiard Random Billiard Random

Average 10.27 22.33 10.26 22.84
St.dev. 0.126 0.408 0.120 0.571

Table 2: The averages and standard deviations of the best fitness values in the
final generation over 20 GA runs (“Runs”) and of the best GA solution over
20 fitness recalculations (“Best solution”) for billiard sequences and random
assignments.

The two GA solutions for the different assignment strategies are very similar,

but differ somewhat in their densities. In fact, using the best density vector

found by the GA for the random assignment version, and then recalculating

its fitness using the billiard sequences version of the fitness function, yields a

similar but (statistically significant) slightly higher waiting time.

As already observed in [9] for a call-center model, the optimal balanced

sequence has better fitness than the implementation of the optimal random

density by means of a balanced sequence. Thus, this phenomenon can also be

observed for the multi-server problem, although the improvement of the solution

of optimization (1) over the implementation of the solution of (2) by means of

a billiard sequence is relatively small.

Finally, to show that 100,000 arrival events are enough to reach stationarity

in the simulation model, we took the best solution found by the GA (using

billiard sequences) and recalculated again its fitness value, but this time for dif-

ferent numbers of arrival events. Figure 1 shows the average waiting times (solid

line) plus or minus one standard deviation (dashed lines). Clearly, convergence

is largely reached with 100,000 (1e+05) arrival events.

17

1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

7
8

9
10

11

arrival events

F
itn

es
s

Figure 1: The average fitness (solid line) plus/minus one standard deviation
(dashed lines) for the best solution found by the genetic algorithm for different
numbers of arrival events.

5.2 The quality of the GA solution

First, we performed a parameter sensitivity analysis to make sure that the cho-

sen GA parameters are indeed in an optimal range. In particular, we varied

the value of the three main parameters in our GA implementation (population

size P , number of generations G, and tournament selection probability pt), per-

formed 20 runs of the GA with each alternative parameter value (using billiard

sequence assignments), and compared the averages of the best fitness values

in the final generation with the average value presented in table 2 (10.27) by

performing a t-test. The results are presented in table 3.

Recall that the results in the previous subsection were obtained using pa-

rameter values P = 30, G = 50, and pt = 0.9. Table 3 clearly shows that if any

18

Population size Generations Selection probability
16 50 30 70 0.7 0.95

Average 10.85 10.28 11.13 10.24 10.70 10.26
St.dev. 0.727 0.123 0.560 0.081 0.643 0.085
p-value 0.00187 0.614 0.000001 0.555 0.00691 0.907

Table 3: The averages and standard deviations of the best fitness values in the
final generation over 20 GA runs for various alternative GA parameter values.

of these three main GA parameters is too low (P = 16, G = 30, or pt = 0.7),

the results are significantly worse (p-values of 0.00187, 0.000001, and 0.00691,

respectively). However, if any of these parameter values is larger (P = 50,

G = 70, or pt = 0.95) than those used to obtain the results presented in table

2 above, there is no improvement (p-values of 0.614, 0.555, and 0.907, respec-

tively). So, the used parameter values indeed seem to be an optimal trade-off

between finding good solutions while not using too much unnecessary computing

time.

Next, to obtain an indication of the quality of the GA solution, we compared

the GA search with a random sample of density vectors ~p drawn uniformly and

of size 10,000. Figure 2 shows the fitness value of the best individual in the GA

population against the number of fitness function evaluations (solid line).

Starting with an initial population of random density vectors ~p, with rel-

atively large fitness values, the best fitness in the population quickly reduces

over time, and within a thousand function evaluations the algorithm already

converges towards the best solution with an average waiting time of close to 10

time units. Note that the GA was run for only G = 50 generations, i.e., 1500

fitness function evaluations in total (given a population size of P = 30). How-

ever, the curve indicating the best solution over time (solid line) is continued

until 10,000 function evaluations for comparison with the random sample.

The dashed line in Figure 2 shows the best fitness value found so far against

the number of function evaluations in a random sample of density vectors ~p

19

0 2000 4000 6000 8000 10000

0
50

0
10

00
15

00
20

00

Function evaluation

B
es

t f
itn

es
s

Genetic algorithm
Random sample

Figure 2: The best fitness against the number of function evaluations for the
genetic algorithm (solid line) and for a random sample (dashed line).

of size 10,000. Clearly, the best solution from the random sample does not

even come close to the best GA solution. From this, we can conclude that the

probability of wrongly assuming that the solution found by the GA belongs to

the best 1% of all possible solutions is no larger than 5 % (as argued briefly in

Section 3 and in detail in [27]). Note that this does not necessarily mean that the

fitness value of the GA solution is less than 1% different from the optimal (best

possible) fitness value. After all, it is not know what the optimal fitness value is.

But if it were possible to enumerate all possible solutions (density vectors) and

order them from best to worst, the solution found by the GA would be within

the top 1% of this ranking.

Another way to get more insight into the problem difficulty is to plot the

fitness values from the random sample ordered from best to worst, which yields

20

the so-called ordered performance curve [18]. Figure 3 shows this curve. It

clearly shows that there are only very few “good” solutions and many “bad”

solutions. This makes sense, given that for most (random) density vectors,

0 2000 4000 6000 8000 10000

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00
14

00
00

Rank

F
itn

es
s

Figure 3: The fitness values of the random sample ordered from best to worst.

arriving customers are not assigned to queues according to the distribution of

service times, and one or more of the J queues can easily “explode”, resulting

in very large waiting times, as Figure 3 shows. So, it seems that the customer

assignment problem is not an easy problem, also already indicated by the large

difference between the best GA solution and the best solution from the (much

larger) random sample.

21

5.3 Billiard sequences with enforced periodicity

Given that the densities ~p that are optimized with the GA are double-precision

real numbers in the multi-server simulation model, it is not expected that the

billiard sequence generated with the best GA solution will have a low periodicity.

Indeed, if a billiard sequence of length 100,000 is generated with the densities

from the best GA solution, there is no periodicity at all (i.e., there are no

repeating sub-sequences of length smaller than half the length of the sequence

itself). From a practical point of view, in terms of actually implementing the

(near-optimal) assignment strategy, this is not desirable. However, it is possible

to enforce a given periodicity r in the (candidate) GA solutions by restricting

the densities to multiples of 1
r .

We ran the GA (using the billiard sequence version of the fitness function)

again, but this time enforcing different periodicities r, to see how this influences

the solution quality. Figure 4 shows the best fitness found by the GA (again

averaged over 20 recalculations afterwards) against the enforced periodicity.

Clearly, the average waiting time gets worse with smaller periodicities. For

periodicities r = 100 and r = 50, the difference with the unrestricted best

solution (represented by the thick horizontal line) is still very small. So, even

with an enforced periodicity of r = 50 it is still possible to get qualitatively

similar solutions as in the unrestricted case. However, the situation quickly

becomes increasingly worse for periodicities smaller than r = 50. Note, though,

that the average waiting times in these cases are still better than the best

solution with random assignments! For periodicities smaller than r = 20, the

GA does not seem to find any reasonable solutions anymore. For example for

a periodicity of r = 15, the best solution found has an average waiting time

of more than 200 time units, i.e., ten times worse than the best solution with

random assignments.

22

●●

●
●

●

●

20 30 40 50 60 70 80 90 100

10
12

14
16

18
20

Period

F
itn

es
s

Figure 4: The best fitness value found by the GA against the enforced periodicity
of the billiard sequences. The thick horizontal line represents the best fitness
value in the unconstrained case.

In conclusion, it is possible to include constraints into the optimization prob-

lem, and still have the GA find reasonable solutions. However, the tighter the

constraint(s), the more it influences the performance of the best solution in a

negative way.

5.4 A multi-objective extension

With the best GA solution, the server occupancy rates (i.e., the fraction of

time the servers are actually serving a customer) vary between 72% and 87%

among the J = 10 servers. So, even though the average waiting time for arriving

customers is minimized, the total workload is not equally distributed among the

servers.

23

To investigate if it is possible to get a more balanced workload, we ran the

GA again (using the billiard sequence version), but this time with the standard

deviation of the agency occupancy rates added to the fitness function (with

an appropriate scaling factor). In other words, we not only try to minimize

the average customer waiting time, but simultaneously the variation in server

occupancy rates. It thus becomes a multi-objective optimization problem.

1 2 3 4 5 6 7 8 9 10

Agent

O
cc

up
an

cy
 r

at
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: The server occupancy rates for the original GA solution (gray bars)
and for the multi-objective GA solution (white bars). The solid line indicates
the average server occupancy rate for the first case and the dashed line that for
the second case.

Figure 5 shows the occupancy rates of the 10 servers for the original (unre-

stricted) GA solution (gray bars) and for the multi-objective GA solution (white

bars). There is indeed significantly less variation in the occupancy rates for the

second case (76% to 86%). Table 4 shows the average and standard deviation

in server occupancy rates for the two cases. The standard deviation has been

24

reduced from 0.047 to 0.036 (i.e., a reduction of more than 20%).

Occupancy rate Waiting
GA avg st.dev. time
Original 0.787 0.047 10.26
Multi-obj. 0.811 0.036 11.03

Table 4: The average and standard deviation of the server occupancy rates, and
the average customer waiting time, for the original and the multi-objective GA
solutions.

However, this reduction in occupancy rate variation comes at a cost. As

table 4 shows, the average occupancy rate (over all 10 servers) has increased

from 0.787 (indicated by the solid line in Figure 5) to 0.811 (indicated by the

dashed line in the same figure). In other words, on average the servers are more

busy, which is also reflected in a (statistically significant) increase in average

customer waiting time, from 10.26 to 11.03.

So, as with the constraint on the periodicity of the billiard sequences, opti-

mizing multiple objectives simultaneously comes at a cost in terms of an increase

in the average customer waiting time. However, these examples do illustrate

the possibilities when using a genetic algorithm to optimize the customer as-

signment problem, showing that it is feasible to optimize multiple objectives

simultaneously, or impose constraints in various ways, while still finding reason-

able solutions.

5.5 Comparison with other assignment methods

We conclude this series of examples with a comparison of our method with

earlier results obtained on a slightly simpler version of the multi-server queuing

system. More specifically, we consider a system with three servers, each with

exponentially distributed service times with rates µi, i = 1, 2, 3, and Poisson λ

arrival process. In [21], average waiting times are calculated for the so-called

“open loop” customer assignment method for µ1 = 1, µ2 = 4, µ3 = 7, and λ = 3,

25

6, or 9.

For comparison, we applied a GA to find near-optimal density vectors for

either random assignments or billiard sequence assignment. We also considered

billiard sequences restricted to a maximum period of 50, roughly corresponding

to the periodicities used in the open loop method [21]. Finally, we also consid-

ered the shortest waiting-time policy, which always assigns an arriving customer

to that queue which will have the shortest waiting time. Note that this policy

can, of course, never be implemented in realistic situations, but it represents

the best possible solution.

Table 5 shows the results of this comparison. As before, random assign-

ments (Random) are always the worst. Billiard sequence assignments (Billiard)

outperform the open loop method (Open loop), also when a maximum period-

icity of 50 is imposed (Billiard 50). Obviously the shortest waiting-time policy

(SWP) is superior, but not achievable in practice.

λ Random Open loop Billiard Billiard 50 SWP
3 0.059844 0.030911 0.029317 0.029369 0.006552
6 0.187166 0.119546 0.111929 0.111991 0.043530
9 0.569972 0.411938 0.372741 0.381180 0.180907

Table 5: Comparison of the average waiting time for various assignment meth-
ods. Results for “Open loop” are taken from [21].

In short, these results emphasize that our proposed method of using a ge-

netic algorithm to optimize billiard sequences for job or customer assignments

in multi-server queuing systems without state information outperforms other

known heuristic methods, and optimality of SWP is confirmed.

6 Conclusions

In this paper we addressed the problem of finding near-optimal deterministic

decision sequences for a job assignment problem, where an analytical or effi-

26

cient algorithmic optimal solution is not possible. We followed the principle

naturis artis magistra and used a genetic algorithm for the optimization. We

developed an overall framework for determining a near-optimal deterministic

sequence and also addressed the problem of finding a control sequence with pe-

riodic behavior. Using recent results from the theory of ordinal optimization, we

were able to provide a statistical analysis of the performance of the GA. Hence,

we have shown that the approach developed here is useful, and can generate

near-optimal solutions while also being able to take additional constraints or

multiple objectives into account.

References

[1] E. Altman. Constrained Markov Decision Processes. Chapman and Hall,

1999.

[2] E. Altman, B. Gaujal, and A. Hordijk. Balanced sequences and optimal

routing. Journal of the ACM, 47:4, 2000.

[3] E. Altman, B. Gaujal, and A. Hordijk. Multimodularity, convexity and

optimization properties. Mathematics of Operations Research, 25(2):324–

347, 2000.

[4] E. Altman, B. Gaujal, and A. Hordijk. Regular ordering and applications

in control policies. Discrete Event Dynamic Systems, 12(2):187 – 210, 2002.

[5] E. Altman, B. Gaujal, and A. Hordijk. Discrete-Event Control of Stochastic

Networks: Multimodularity and Regularity. Springer-Verlag New York, Inc.,

ASecaucus, NJ, USA, 2003.

[6] E. Altman, B. Gaujal, A. Hordijk, and G. Koole. Optimal admission,

routing and service assignment control: the case of single buffer queues.

27

In 37th IEEE Conference on Decision and Control, volume 2, pages 2119–

2124, Tampa, FL, USA, 1998.

[7] E. Altman and A. Shwartz. Time-sharing policies for controlled Markov

chains. Operations Research, 41(6):1116–1124, 1993.

[8] P. Arnoux, C. Mauduit, I. Shiokawa, and J. Tamura. Complexity of se-

quences defined by billiards in the cube. Bull. Soc. Math. France, 122:1–12,

1994.

[9] S. Bhulai, T. Farenhorst-Yuan, B. Heidergott, and D. van der Laan. Op-

timal control via balanced sequences. Annals of Operations Research, (to

appear) 2012.

[10] C. Chang, A. Hordijk, R. Righter, and G. Weiss. The stochastic optimality

of sept in parallel machine scheduling. Probability Engineering Informa-

tional Sciences, 8:179–188, 1994.

[11] L.D. Davis. The Handbook of Genetic Algorithms. Van Nostrand Reinhold,

1991.

[12] R. de Goeij. Optimal routing by mixing strategies. Master’s thesis, Vrije

Universiteit Amsterdam, December 2012.

[13] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing.

Springer-Verlag, 2003.

[14] E.A. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Pro-

cesses. Kluwer, 2002.

[15] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.

28

[16] X. Guo, Y. Lu, and M. Squillante. Optimal probabilistic routing in dis-

tributed parallel queues. SIGMETRICS Performance Evaluation Review,

32, 2004.

[17] B. Hajek. Extremal splittings of point processes. Mathematics of Opera-

tions Research, 10(4), 1985.

[18] Y-C. Ho, Q-C. Zhao, and Q-S. Jia. Ordinal Optimization. Springer-Kluwer,

2007.

[19] J. H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, 1975. Second edition: MIT Press, 1992.

[20] A. Hordijk and G. Koole. On the assignment of costumers to parallel queue.

Probability in the Engineering and Informational Science, 6:95–511, 1992.

[21] A. Hordijk, G. Koole, and J.A. Loeve. Analysis of a customer assignment

model with no state information. Probability in the Engineering and Infor-

mational Sciences, 8:419–429, 1994.

[22] A. Hordijk and D. van der Laan. Periodic routing to parallel queues and

billiard sequences. Mathematical Methods of Operations Research, 59:173–

192, 2004.

[23] A. Hordijk and D.A. van der Laan. On the average waiting time for regu-

lar routing to deterministic queues. Mathematics of Operations Research,

30:521–544, 2005.

[24] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[25] M. Morse and G. Hedlund. Symbolic dynamics II: Sturmian trajectories.

American Journal of Mathematics, 62:1–42, 1940.

29

[26] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 1994.

[27] Z. Shen, Q-C. Zhao, and Q-S. Jia. Quantifying heuristics in the ordinal

optimization framework. Discrete Event Dynamical Systems, 20:441–471,

2010.

[28] S. Shinya, M. Naoto, and K. Ryohei. m-Balanced words: A generalization

of balanced words. Theoretical computer science, 314(1):97–120, 2004.

[29] D. P. Song, C. Hicks, and C. F. Earl. An ordinal optimization based evo-

lution strategy to schedule complex make-to-order products. International

Journal of Production Research, 44:4877–4895, 2006.

[30] Y. Xu, K. Li, L. He, and T. T. Khac. A DAG scheduling scheme on hetero-

geneous computing systems using double molecular structure-based chemi-

cal reaction optimization. Journal of Parallel Distributional Computation,

73:1306–1322, 2013.

[31] Y. Xu, K. Li, J. Hu, and K. Li. A genetic algorithm for task schedul-

ing on heterogeneous computing systems using multiple priority queues.

Information Sciences, 270:255–287, 2014.

30

