

Genetically Evolved Cellular Automata for
Image Edge Detection

Jebaraj Selvapeter
1

and Wim Hordijk
2

1
Texas Instruments (India) Pvt. Ltd, Bangalore, India, Jebaraj@ti.com

2
SmartAnalytiX.com, wim@SmartAnalytiX.com

Abstract. This paper presents an alternative method for edge detection based on a

Cellular Automata (CA) algorithm. The main task with such an algorithm is to find a
suitable CA rule out of the 2

2n
 possible rules, where n refers to the number of

neighboring cells considered in the update rule. Finding a good rule for the required
image processing task by hand is difficult. Here, a genetic algorithm (GA) is used to
find a good cellular automata update rule for the edge detection task, for both noise
free and noisy images. The method used for edge detection has two distinct phases. In
the training phase, the model is trained with simple example patterns. In the execution
phase, the best rule found in the training phase is applied to several real images. The
system is trained with both Von Neumann and Moore neighborhood configurations.
The performance of this proposed approach is compared, using a subjective measure
and the false alarm rate, with that of standard edge detection operators and different
variations of the CA edge detection method. To further improve performance at higher
noise levels, a CA filter is used as a preprocessing stage. Compared with other
methods, the evolved CA performs better with less computational requirement.

Key words: Cellular Automata, Genetic Algorithm, Edge Detection

1 Introduction

 A fundamental problem in image analysis is edge detection. In

particular in the processing of medical or biological images, the study of

edges has become an important task. There are numerous applications for

edge detection, which is often used for various specific effects. Digital artists,

for example, use it to create dazzling image outlines. The output of an edge

detector can be added back to an original image to enhance its edges. Edge

detection is often the first step in image segmentation, a method that is used

to group pixels into regions to determine an image's composition.

 The edges of an image hold much information about that image [1].

The edges tell where objects are located, what their shapes and sizes are,

and they contain information about their texture. Edges in images are areas

with strong intensity contrasts, a jump in intensity from one pixel to the next.

Edge detecting an image can significantly reduce the amount of data, and

filter out useless information, while preserving the important features.

 The first and most obvious requirement for a successful edge detector

is a low error rate. It is important that edges occurring in images are not

missed, and that there are no responses to non-edges. The second criterion

is that the edge points are well localized. In other words, the distance between

the edge pixels as found by the detector and the actual edge is to be at a

minimum. A third criterion is to have only one response to a single edge (the

first two criteria alone are not necessarily enough to eliminate the possibility of

multiple responses to an edge).

 There are an infinite number of edge orientations, widths, and

shapes. Some edges are straight, while others are curved with varying radii.

There are many edge detection techniques to go with all these different types

mailto:Jebaraj@ti.com

of edges, each having its own strengths [2]. Some edge detectors work well in

one application and perform poorly in others. Sometimes it takes

experimentation to determine what the best edge detection technique for an

application is.

 Generally, edge detection methods can be grouped into three

categories:

1. First order or gradient edge detection operators.

2. Second order or Laplacian edge detection operators.

3. Cellular automata based edge detection operators.

 The Sobel operator, Canny operator, Prewitt operator, Roberts’s

operator, and Isotropic operator are examples of gradient edge detection

operators [3]. Gradient operators produce a large response across an area

where an edge is present. Ideally, an edge detector should indicate any edges

at the center of an edge, called “localization”. First order edge detectors often

produce multiple width edges. It then becomes necessary to employ a

process called “thinning” to reduce the edge width to one pixel. Second order

derivative edge detectors provide better edge localization. The Laplacian is a

good example of a second order operator. The Laplacian method searches for

zero crossings in the second derivative of the image to find edges.

 Edge detection based on gradient operators and Laplace operators

require much computing time. With an increasing demand for high speed real

time image processing, the need for parallel algorithms instead of sequential

ones is becoming more important. As an intrinsic parallel computational

model, cellular automata (CA) can cater to this need. Previously, different

cellular automata models were used for performing edge detection. For

example, a simple CA rule is used in [4], an asynchronous CA is presented in

[5], and a CA rule based on functional maximization is proposed in [6]. The

main drawback with this functional maximization method, however, is the

requirement of a threshold value. A new approach for edge recognition based

on the combination of a CA and a traditional method of image processing is

proposed in [7], in which the concept of a boundary operator is used to

represent the state of a cell, and the local rule is defined based on prior

knowledge. Here, we take an alternative approach by using a genetic

algorithm to evolve a CA rule to perform the edge detection task.

 Edge detection operators can be compared in a number of ways.

First, the image gradient can be compared visually, since the eye itself

performs some sort of edge detection. In the noiseless case, all the operators

are roughly equivalent. Quantitatively, the performance under noise of an

edge detection operator may be measured as follows. Let N0 be the number

of edge pixels declared, and N1 be the number of missed or new edge pixels

after adding noise. If N0 is held fixed for the noiseless as well as noisy

images, then the edge detection error rate is given in equation (1) below.

False alarm rate can also be used to compare the performance of edge

detection operators quantitatively.

Pe = N1/N0 (1)

 This paper is organized as follows. Section 2 introduces the evolving

cellular automata model for the edge detection task. Section 3 then describes

an extension of this model by adding a CA-based noise filter. Section 4

presents the implementation results. Finally, section 5 summarizes the main

conclusions.

2 Evolving Cellular Automata for Image Edge Detection

 The evolving CA model used in this work operates in two distinct
stages [9]: (1) a training phase, and (2) an execution phase. In the training
phase, the model is trained with simple example patterns. In the execution
phase, the best rule found in the training phase is evaluated on real images.

A. Training phase

 In the training phase, the input images and target images are applied
to the model as shown in Fig. 1. For this training phase, some simple patterns
are used as the input images, which are shown in Fig. 2. The population of
CA rules (transition functions) is applied to the input patterns one by one.
Each CA rule is allowed to update the pattern for a fixed number of iterations.
The output image obtained for each rule after the fixed number of CA
iterations is then compared with the target image (i.e., the desired output
image). The number of iterations is chosen as to allow adequate time for the
cells to reach a stable state. Both Von Neumann and Moore neighborhood
configurations are used.
 One of the key issues in the success of the model lies in finding an
appropriate fitness function, which quantitatively expresses the difference
between the desired output pattern (target image) and the obtained output of
a CA rule. For the edge detection task, a simple bit-by-bit comparison is
adopted. This yields a bitwise match score for each image transformation.
The overall fitness value F is then calculated as the root mean square of
these matching scores produced on each image training pair.
 These fitness values are calculated for each CA rule in the
population, and are then used to decide which CA rules are selected for the
next generation as parents. The selected parents are subjected to the genetic
operators of crossover and mutation, creating “offspring” individuals. A new
population of offspring individuals then replaces the previous population, and
this process is repeated for a number of generations, until a satisfactory result
is obtained [8].

Fig. 1. Evolving CA model

Fig. 2. Input (top row) and target (bottom row) images for the evolving CA model for

the edge detection task.

B. Execution Phase
 Once an optimal CA rule has been found for the edge detection task,
or the maximum number of generations is reached, the system is trained and
is ready to begin processing. In the execution phase, previously unseen
images are presented to the evolved CA individually, which subsequently
updates the cell states for the allowed number of iterations, thus transforming
the raw input image to an edge-detected image.

3 Evolving CA with a Noise Filter for Edge Detection of
Noisy Images

 An extended approach is now introduced to further improve the
performance of CA edge detection, in particular at higher noise levels. This
new proposed method first uses a CA based noise filter [10,11], followed by
the evolved CA for edge detection. Noise filtering is another fundamental
problem in image processing. Often, noise filtering needs to be performed
before any other image processing task can be done. In previous work, we
described a CA based image noise filter [11]. Here, we combine the two
methods in a two-step process, by first applying the CA noise filter to a noise
corrupted image, and then the evolved CA edge detector to find the edges in
an image.

4 Implementation and Results

 The first part of this section analyzes the results for noise free
images, and the second part analyzes the results for noisy images. The
results obtained with the evolving CA model are compared with standard edge
detection operators and variations of the CA edge detection methods. First,
Table 1 provides an overview of the GA implementation and parameter values
used in the training phase of the evolving cellular automata framework for the
image edge detection task.
 Figure 3 shows the convergence of the genetic algorithm with
different population sizes, generations, and crossover probabilities. With a
population size of 30 or 40, the convergence of the GA with crossover
probability 0.8 is faster compared with a crossover probability of 0.7 and 0.9.
When the population size increases to 50 or 60, the convergence of the GA is
better with crossover probability 0.9.

Population Size 60

String Length 32

Fitness function Image size – Error

Max. no. of CA iterations 3

Selection Elitist selection E = 1

Crossover One point cross over, Pc = 0.9

Mutation Pm = 0.035

Generation 150

Table 1. The used GA parameters and values.

 The best CA rule obtained in the training phase is applied to a
cameraman image (not part of the training images). Fig. 4 shows the result of
the edge detection. The CA edge detector finds the edges exactly. A
comparison shows that the performance of the evolving CA framework is
better (less fuzzy) than the standard first order and second order edge
detection operators.
 Next, the performance of evolving CA edge detection with noisy
images is compared with other CA edge detection methods presented
previously, in terms of false alarm rate. Noisy images with different noise
ratios are considered. Salt & pepper noise is added to the images and the
different CA algorithms are applied to the noisy and noise free images. Fig. 5

shows the comparative performance of the evolved CA edge detection
method for noisy image with that of first and second order edge detection
operators in terms of false alarm rate. The performance of the Canny operator
is very poor. The performance of the evolved CA is comparable up to a 10%
noise ratio. When the noise ratio increases, however, the performance starts
to degrade, but remains comparable with Log, Canny, and Robert edge
detection operators.

Fig.3. Convergence of the genetic algorithm for various parameter values.

Fig.4. Evolved CA edge detection results and comparison.

Fig.5. Comparison of the evolved CA edge detection in terms of false alarm rate.

 To improve the performance of the evolved CA edge detection with
higher noise levels, a Moore neighborhood configuration is used instead. With
the Moore neighborhood configuration, the length of each chromosome is 2

9
 =

512 bits. The Moore neighborhood configuration evolving CA model requires
a larger number of generations to converge. The performance of the evolved
CAs with both a Moore and a Von Neuman neighborhood is compared for a
noisy image. Table 2 shows the performance in terms of false alarm rate.
Compared with the Von Neumann neighborhood configuration, the Moore
neighborhood performs well. But at a 20% noise level, performance of first
and second order edge operator is superior to the evolved CA edge detection.
 To further improve the performance of CA edge detection at higher
noise levels, the proposed approach uses a CA based noise filter as a
preprocessing stage to reduce the noise level of the input noisy image. Fig. 6
shows the performance of evolving CA edge detection with Moore and Von
Neuman neighborhood configurations with a CA filter at 50% noise level.
Based on subjective measures, the performance of evolving CA with Moore
neighborhood is better than all other edge detection operators. But as
discussed, the training of CA with a Moore neighborhood takes more
generations to converge compared with a von Neuman neighborhood.

Noise
Ratio

EVCA
(Moore)

EVCA
(Von

Neuman)
Canny Log Prewitts Sobel Roberts

0.01 0.004 0.006 0.050 0.010 0.009 0.008 0.110

0.1 0.076 0.081 1.338 0.160 0.097 0.127 0.130

0.15 0.163 0.231 1.624 0.302 0.125 0.180 1.000

0.2 0.409 0.751 2.016 0.516 0.159 0.193 1.000

TABLE 2. False alarm rate on noisy images.

 Finally, Table 3 shows the performance comparison in terms of a
quantitative measurement. The false alarm rate parameter is used to evaluate
the performance of different edge detection operators with that of the
proposed CA edge detection methods. Even at a 20% noise level, the first
and second order edge detection methods suffer a lot with noise. But the
proposed evolving CA edge detection methods produces good results at a
50% noise level also.

Noise
Ratio

CA (Von
Neuman)

CA
(Moore)

Roberts Log Prewitts Sobel

0.01 0.0169 0.0757 0.0744 0.0152 0.0114 0.0122

0.05 0.0355 0.0866 0.4909 0.0527 0.0622 0.0657

0.1 0.0648 0.0988 0.4609 0.1355 0.093 0.0849

0.2 0.0493 0.0997 1.0000 0.4406 0.1477 0.1421

0.3 0.0191 0.1049 1.0000 0.7420 0.3432 0.4447

0.5 0.3965 0.2997 1.0000 1.428 1.0000 1.0000

TABLE 3. False alarm rate of evolving CA.

5 Conclusions

 A simple genetic algorithm is used to train cellular automata to
perform an edge detection task. A good CA rule for edge detection was found
within 150 generations. The rule obtained was tested with a simple pattern
and a real image with 10% salt & pepper noise. The results show that the
system can be successfully trained with a genetic algorithm, and that the
performance of evolving CA edge detection is better than standard edge
detection operators like the Prewitt operator, Canny operator, Log operator,
and Sobel operator. For real images, CA edge detection is better than Robert,
Log, and Canny operators. At lower noise levels, the CA operator is
comparable with the Sobel and Prewitt operators. With a Moore neighborhood
configuration, the evolving CA model performance of edge detection improved
significantly. The performance of edge detection is even further improved by
the use of a CA filter as a preprocessing stage. At low noise levels, due to this
preprocessing stage, the performance is similar to the Sobel and Prewitt
methods. But even in the presence of 50% noise, the evolving CA model with
a Moore neighborhood still gives good edge detection result. Future work may
be carried out to find the CA rule for edge detection for even higher noise
level images, by using a more complex genetic algorithm, for example by
considering multi-point crossover and mutation operators. To enhance the
performance at all noise levels, it is also possible to use a switching scheme.
Depending on the noise level, it is possible to select a specific pre-processing
stage. This evolving CA model can be extended to gray level images also.

References

1. M. Heath, S. Sarkar, T. Sanocki, and K. Bowyer. Comparison of edge
detectors: A methodology of initial study. Computer Vision and Pattern
Recognition, San Francisco, June 1996.

2. L. S. Davis. A survey of edge detection techniques. Computer Graphics and
Image Processing, 12:248–270, 1975.

3. R. Boyle and R. Thomas. Computer Vision: A First Course. Blackwell
Scientific Publications, 1988.

4. S. Wongthanavasu and R. Sadananda. A CA-based edge operator and its
performance evaluation. Journal of Visual Communication and Image
Representation, 14:83–96, 2003.

5. A. Scarioni and J. A. Moreno. Border detection in digital images with a simple
cellular automata rule. In S. Bandini, R. Serra and F. S. Liverani (eds.),
Cellular Automata: Research towards Industry, 1998.

6. A. Scarioni and J. A. Moreno. Border detection by the maximization of a
functional of pixel difference.

7. Chen ang and hao e.G.Z.Wang. Cellular automata modeling in edge
recognition.

8. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, 1989.

9. P. Sahota, M. F. Daemi and D. G. Elliman. Training genetically evolving
cellular automata for image processing. International Symposium on Speech,
Image Processing and Neural Networks, Hong Kong, 13-16 April 1994.

10. A. Popovici and D. Popovici. Cellular automata in image processing. In D. S.
Gilliam and J. Rosenthal (eds.), Proceedings of the 15th International
Symposium on the Mathematical Theory of Networks and Systems, 2000.

11. Jebaraj Selvapeter.P and W. Hordijk. Cellular automata for image noise
filtering. In A. Abraham, A. Carvalho, F. Herrera and V. Pai (eds.),
Proceedings of the World Congress on Nature and Biologically Inspired
Computing, 193–197, 2009.

Fig. 6. Edge detected image by evolving CA with Moore neighborhood and evolving

CA with Von Neuman neighborhood. Configurations with a 50% noise level.

