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Abstract

Chemical networks often exhibit emergent, systems-level properties
that cannot be simply derived from the linear sum of the individual com-
ponents. The design and analysis of increasingly complex chemical net-
works thus constitute a major area of research in Systems Chemistry.
In particular, much research is focused on the emergence of functional
properties in prebiotic chemical networks relevant to the origin and early
evolution of life. Here, we apply a formal framework known as RAF the-
ory to study the dynamics of a complex network of mutually catalytic
peptides. We investigate in detail the influence of network modularity,
initial template seeding, and product inhibition on the network dynamics.
We show that these results can be useful for designing new experiments,
and further argue how they are relevant to origin of life studies.

1 Introduction

The origin of life inevitably involved the selection of functional molecules and
self-organized molecular networks, made possible through the reliable replication
of either individual molecules or entire sets of molecules. Minimal molecular
self-replication has been demonstrated using synthetic nucleic acid and peptide
entities [1, 2, 3, 4, 5, 6], and subsequently the formation of small replication
networks has been realized experimentally [7, 8, 9].

One of the few successful examples of the latter involves a set of nine peptide
molecules that mutually catalyze each other’s formation from shorter peptide
fragments, such that the set as a whole is self-reproducing [10]. However, such
experiments are often difficult to perform in the laboratory. Furthermore, it
is difficult to design additional experiments necessary to reveal the intricate
network dynamics and possible sets of inter-molecular sub-networks.

Networks of molecules often behave in complex and unpredictable ways,
making it difficult to choose the right experimental ingredients and conditions.

*Institute for Advanced Study, University of Amsterdam, The Netherlands
TBen-Gurion University of the Negev, Be’er Sheva, Israel



In systems biology, the use of computational modeling to investigate complex
biological processes has been a common practice for many years [11]. Here,
we apply a computational modeling approach to investigate complex chemical
networks.

In particular, we apply the formal framework of autocatalytic sets to the
above-mentioned self-reproducing peptide network. An autocatalytic set is a
network of chemical reactions in which the molecules mutually catalyze each
other’s formation from a basic food source. Thus, the self-reproducing peptide
network serves as an experimental example of such an autocatalytic set. The
general concept of autocatalytic sets has been formalized and studied in detail
as RAF theory [12].

We use RAF theory to study the peptide autocatalytic set, investigating
in particular the influence of network modularity, initial seeding, and product
inhibition on the network dynamics and product distribution. We argue that
the results of such a theoretical and computational investigation can be useful
for designing new experiments. Indeed, recent experiments with the peptide
network already verify some of the results obtained from the formal analysis
presented here. Finally, we discuss how these results are relevant to origin of
life studies.

2 Background

2.1 Autocatalytic sets

The concept of autocatalytic sets was originally introduced by Kauffman [13,
14, 15]. An autocatalytic set is defined as a set R of reactions (and the molecule
types involved in those reactions) that is:

1. Reflexively autocatalytic (RA): each reaction in R is catalyzed by at least
one of the molecule types involved in R; and

2. F-generated (F): each molecule type involved in R can be created from
the food set F' through some sequence of reactions from R.

The food set F is a (sub)set of molecule types that can be assumed to be
directly available from the environment, i.e., they do not necessarily need to
be produced through reactions in R itself. A simple example, represented as a
reaction graph, of an autocatalytic set is shown in Figure 1.

This notion of autocatalytic sets, or RAF sets, has been defined mathemat-
ically more rigorously, and an efficient (polynomial-time) algorithm for detect-
ing RAF sets in general chemical reaction networks has also been developed
[16, 17, 18, 12]. This RAF algorithm has been applied extensively to simple
polymer-based computational models of chemical reaction networks, showing
that autocatalytic sets are highly likely to exist at chemically realistic levels of
catalysis, and under a wide variety of model assumptions [16, 17, 19, 20, 21, 22].
Moreover, several experimental self-replicating networks constructed in the lab
have confirmed the chemical feasibility of RAF sets [23, 24, 10, 25].



Furthermore, computational studies have shown that RAF sets often con-
sist of a hierarchy of smaller and smaller RAF subsets, i.e., smaller subsets of
reactions that themselves are autocatalytic [26, 18]. Of particular interest, es-
pecially from a dynamical point of view, are the so-called closed RAF subsets.
A closed RAF R’ is a subset of a RAF R that contains all reactions r € R for
which all reactants and at least one catalyst are either generated by some reac-
tion from R’ or are part of the food set F' [21]. These closed RAFs represent
the dynamically stable subsets of a RAF, i.e., they do not produce any new
molecule types outside of those involved in R’ itself without the need for (rare)
spontaneous, i.e. uncatalyzed, reactions.

Finally, the formal RAF framework has been applied successfully to analyze
real chemical and biological reaction networks [27, 28].

2.2 The peptide autocatalytic set

More than a decade ago, Ashkenasy, Ghadiri, and colleagues constructed an
autocatalytic set using nine helical peptides [10, 7]. This experimental auto-
catalytic set is represented in Figure 2, where the reaction products/templates
(T;, i = 1,...,9) are represented by the nodes in the graph, and the edges
indicate which templates catalyze the formation of which products. The labels
on the edges represent the relative template-product complex stability and can
be associated with the efficiency of the respective catalytic processes (explained
in more detail below).

Each reaction product T; is directly produced from the food set (not shown
in the figure), which consists of the peptide fragments N (a nucleophile) and
E; (electrophiles). In other words, the reactions underlying the network are all
of the form N + E; — T;. Thus, any subset of products T; is automatically
food-generated. Furthermore, since each of the nine peptides has its formation
catalyzed by at least one other peptide (i.e., there is at least one incoming edge
for each node), this set is also reflexively autocatalytic, and thus forms a RAF
set for the given food set. Since there are 25 edges in the graph, the full reaction
network consists of 25 catalyzed reactions of the form N + E; + T; — T; +
T.

j-

3 Methods

To perform stochastic dynamic simulations of this peptide autocatalytic set,
the standard Gillespie algorithm is used [29, 30]. Rate constants for the 25
catalyzed reactions were calculated by extrapolation from the values in Table 1
(reproduced from [10]).

This table lists the theoretical (calculated) scores s = —AAG of the template-
product complexes, and experimental (measured) relative rate constants r =
K, for each of the nine autocatalytic reactions in isolation, as reported in
[10]. Briefly, —AAG compares the stability of all template-product complexes
with that of a reference peptide (—AAG = 0) in which the mutated residues



T, Ty T3 Ty Ts Tg T; Tsg Ty
5130 69 48 24 84 45 48 69 42
1.0 22 71 <1 69 25 25 22 16

Table 1: Relative autocatalytic efficiency of the nine peptides in isolated reac-
tions. Reproduced from [10].

had the neutral Alanine side chains. K. reflects a variation of the Michaelis-
Menten evaluation of the autocatalytic reaction. K, was calibrated against
the Kcat/Kyncat of peptide T1; this ratio has been arbitrarily assigned with
K¢ = 1. See [10] for details.
Using these s and r values, a quadratic relationship was fitted between them
(see Figure 3):
r = 52.9 — 26.55 + 3.35> (1)

Next, using this fitted quadratic equation, relative rate constants r for all 25
catalyzed reactions were calculated using the corresponding scoring values s
indicated on the edges in Figure 2, resulting in r values ranging from 5.5 for
the slowest to 66.0 for the fastest reaction. In addition, each reaction N + E;
— T; is also allowed to happen spontaneously (i.e., uncatalyzed) with a lower
rate constant rg, = 1.0. So, there is a total of 25 catalyzed + 9 spontaneous =
34 reactions in the simulations.

Each simulation run is initialized with 50,000 molecules for each of the nine
E; and 300,000 molecules of N. This ratio between the E; and N initial con-
centrations results in competition between the different E; to react with an
under-stoichiometric amount of N, as also applied in the original experiments
[10]. Each simulation is then run for a given amount of time 7" until most
of the food molecules (peptide fragments E; and N) have been converted into
full-length peptides (products T).

Since the relative rate constants r in the simulation have no explicit units,
we need to choose appropriate values for the volume V' and the simulation time
T. We have chosen V = 10! (again in arbitrary units), in which case all food
molecules are converted into products within 7' = 10 (arbitrary) units of time.

Finally, to determine the closed RAF subsets within a given RAF set R, the
chemical organizations [31] of R are computed, which include all its closed RAF
subsets [32].

4 Results

4.1 Modularity

The 9-peptide RAF set R in Figure 2 contains several smaller subsets that form
RAF sets by themselves, such as for example the subset {T3,T5,T7}, since these
molecules all catalyze each other’s formation. However, only two of these RAF
subsets are relevant from a dynamical point of view, forming closed RAFs.



First note that no RAF subset can be realized (dynamically) without at least
one spontaneous (i.e., uncatalyzed) reaction. When starting the simulation with
the food set only, none of the catalysts (the products T;) are present yet, so at
least one of them will have to be produced by one of the reactions N + E; —
T; happening spontaneously. This is of course always possible, but will happen
at a lower rate than a catalyzed reaction. But once one catalyst is produced
spontaneously, it can start catalyzing the production of other products (i.e.,
catalysts), and different RAF subsets can come into existence depending on
which catalyst was produced first.

In particular, if one of the catalysts T, T3, T4, T5, or T7 is produced
spontaneously, then the RAF subset R1={T;,T3,T4,T5,T7,Tg} can come into
existence, due to the high level of mutual catalysis within this subset. However,
none of the peptides in the subset R; catalyzes any of the peptides in the
subset Ro={T2,Ts,Ts}. So, the only way to get the RAF subset Ry to come
into existence is to have one of its members produced spontaneously. When this
happens, though, not only R itself, but also R; can come into existence, since
the members of Ry do catalyze several members of R;.

Consequently, given that R; URs = R, the only two closed RAF subsets are
R1 and the full RAF set R. This is easily verified by computing the chemical
organizations within R, confirming this modularity (i.e., existence of more than
one closed RAF subset).

Finally, note that if Ty is produced spontaneously, still no RAF subset can
come into existence, since Ty does not catalyze the production of any other
peptide, but it is catalyzed by one member of both Ry and Rs.

To show the influence of this modularity on the possible dynamics of the sys-
tem, Gillespie simulations were performed on the 9-peptide reaction network.
Figure 4 shows an example where Ts and Tg were produced through sponta-
neous reactions, giving rise to the closed RAF R, i.e., the full 9-peptide RAF
set.

Note that in this case T, T7, T, and T3 are produced in the highest
quantities, T4 and Ty in intermediate quantities, and Ts, Tg, and Tg in the
lowest quantities. Most of the members of R; are being produced in the highest
quantities, not only due to their own high level of mutual catalysis, but also
because some of them are being catalyzed by members of Ry. On the other
hand, the members of Ry are being produced in the lowest quantities, as they
only mutually catalyze each other but are not catalyzed by any members of R;.

Figure 5 shows another example, but one where T3 and T4 were produced
by spontaneous reactions, in which case only R; is produced. Since none of
the members of Ry were produced spontaneously, this subset never came into
existence (recall that none of its members are catalyzed by R1).

As a third possibility, if one of the members of R is produced spontaneously
but at a later time than one of the members of R;, then most of the food
molecules will be converted into members of R1, in which case the concentrations
of Ro remain very low. An example of this type of dynamics is shown in Figure
6 where Tg was created through a spontaneous reaction sometime after T; had
already been created.



In conclusion, the network modularity, i.e., the existence of two closed RAF
subsets, has a clear influence on the possible dynamics of the system. Depend-
ing on which catalysts are produced through initial spontaneous reactions, and
in which order, at least three different dynamical behaviors (attractors) are
possible.

These dynamical simulations reflect the theoretical network analysis, in par-
ticular the existence of two separate subsets R and Ro. Looking at the final
distribution of peptides (at the end of the simulation), one finds that the ex-
perimental results from [10] were partially reproduced. Using the HPLC data
shown in Fig. 3 of the original paper [10], which is representative of several
experimental repetitions, and comparing them with the final distribution of the
simulation run shown in Figure 4, the “relative abundances” of the nine peptides
are compared in Figure 7.

As this histogram shows, there are some differences between the two distri-
butions. For example, whereas Tg has the highest relative abundance (about
15%) in the experiment, it has one of the lowest relative abundances (about
5%) in the simulation. On the other hand, in the simulation T3 and T5 end up
at one of the highest relative abundances (15% or higher), whereas these have
some of the lower relative abundances in the experiment (8-9%). Even though
there are fluctuations in these abundances between repetitions of the same ex-
periment, these differences between the experimental and simulation results are
larger than what could be expected from mere experimental errors.

Moreover, the experimental results do not reflect the network modularity
made explicit in the simulations. So, most likely there are some additional
catalytic links in the experimental system that were not included in the theo-
retically calculated links in Figure 2. For example, Figure 8 shows the result of
a simulation where T also catalyzes Ty and Ty (with a threshold score of 5.6),
making it a “fully connected” network, i.e., there is no modularity (separate
closed RAF subsets) anymore. In this case, T2 and Tg are produced in larger
quantities than before (i.e., compared with Figure 4), bringing the simulation
results much closer to the experimental result.

For the simulations described in the following subsections, the fully con-
nected version of the network is used (with T; also catalyzing T9 and Tg), to
make sure the simulation results reflect more accurately the observed experi-
mental results. Furthermore, in the discussion section we describe how envi-
ronmental conditions can be altered to induce modularity explicitly, also in the
actual experimental systems.

4.2 Seeding

As already became clear in the previous section, the relative abundances with
which the various peptides are produced also depend sensitively on which pep-
tides are produced initially by spontaneous reactions. To make this dependence
more explicit, we repeated the simulations but seeding them with 50 molecules
of one particular T; (once for each of the nine peptides), rather than allowing
spontaneous reactions to happen. In these simulations, we use the fully con-



nected network, i.e., with T; catalyzing the formation of T9 and Ty (with a
threshold score of 5.6), for a more fair comparison with experimental results.

Figure 9 shows the relative abundances for all nine peptides for each possible
seed. As this plot shows, for some peptides it does not matter much what the
seed was. For example, T, T5, and Ty are relatively insensitive to the type of
seed. However, especially Ts, T¢, and Tg are quite sensitive to the seed. This
plot also confirms the earlier claim that if the system is seeded with Tg, none
of the peptides are produced, given that Tg does not catalyze any reactions.

This dependency of production rates for each of the nine peptides on the
seed was also demonstrated with the chemical experiments [10], and is clearly
reflected in the simulations as well.

4.3 Product inhibition

In the simulations so far, it has been assumed that the catalyst and the newly
formed product dissociate immediately after the ligation reaction has happened.
However, in reality this dissociation happens only at a given (often slow) rate,
which may result in product inhibition, i.e., the newly formed product is not im-
mediately available to act as a catalyst itself. To investigate the effect of product
inhibition on the network dynamics, the catalyzed N + E; — T, reactions are
considered to happen in two steps:

2. TiOTj — Tl + Tj

The reactions in the first step have the same rate constants r as the original
(catalyzed) ligation reactions, while the dissociation reactions in the second step
now have rate constants that are inversely proportional to the corresponding r
values.

In particular, the dissociation reactions have rate constants of the form k& x
0.01 x 10%, where k is determined as follows. Recall from the Methods that the
rate constants r for the (catalyzed) ligation reactions range from 5.5 to 66.0.
Dividing this range into ten roughly equally spaced bins from high (66.0) to
low (5.5), if the rate constant r of a ligation reaction N + E; + T; — T;eT;
falls in the kth highest bin, then that value of k is used in calculating the rate
constant for the corresponding dissociation reaction T;eT; — T; + T;. In
other words, a more efficient catalyst (higher value of r) is assumed to have a
lower dissociation rate.

Finally, the parameter a reflects the strength of the product inhibition. Here,
a=0,—-1,—2,—3,—4 are used, where a = 0 results in weak product inhibition
(high rate of dissociation) and a = —4 results in very strong product inhibition
(low rate of dissociation). Each simulation run is seeded with 10 molecules of
T, (no spontaneous reactions are allowed), and the fully connected network is
again used (including T catalyzing the formation of T and Tg).

Figure 10 shows the result of a simulation with a = 0 (i.e., weak product
inhibition). However, the effect is already significant. First, there is a longer



lag time (about 15 time units rather than just 1 or 2) before the peptides start
becoming available (the “onset” of product formation). Second, the relative
abundances are also different compared to the original simulation run without
product inhibition (refer to Figure 8).

Figure 11 shows the effect of the strength of product inhibition on the (initial)
growth rate of one of the products (T;). For decreasing values of a (i.e., the
order of magnitude by which the dissociation rate is decreased), the growth
rate of T; decreases significantly. The curves in Figure 11 show the amount
of product only from the onset of product formation (i.e., after the lag time).
However, the actual lag time for this onset itself increases about one order of
magnitude with each decrease of one order of magnitude in the parameter a.

Finally, the strength of product inhibition also has a significant effect on the
relative abundances of the products. Figure 12 shows histograms of the relative
product abundances at the end of each simulation run for different values of the
parameter a. Only Ty and Tg do not seem to be influenced, but for the others
there is either a clear decrease or increase with increasing strength of product
inhibition (i.e., decreasing a).

In fact, the effect of product inhibition brings some of the relative abundances
even closer to the experimental results, suggesting that product inhibition does
indeed play a role in the experimental system.

5 Discussion

We have shown how the dynamics of a particular autocatalytic network consist-
ing of peptides depends on at least three topological and mechanistic factors:

1. Modularity of the reaction network (i.e., existence of multiple closed RAF's
and their cross-talk).

2. Seeding of the system (i.e., which catalyst is introduced or spontaneously
produced first).

3. Product inhibition (i.e., dissociation rate between a catalyst and the newly
formed product).

Network modularity has been shown to be crucial for the potential evolvabil-
ity of autocatalytic sets [33, 20, 34]. Such modularity clearly exists within the
theoretically calculated peptide network, both in terms of the network analysis
(in the form of closed RAFs) and in the dynamical simulations (in the form of
different possible relative abundances of the various peptides).

The 9-peptide RAF set studied here was originally taken from a larger set of
25 peptides for which catalytic connections (scores) were calculated theoretically
[10]. This full 25-peptide set is reproduced in Figure 13, and also forms a RAF
set. Moreover, this RAF set contains many RAF subsets, including 12 closed
RAFs (determined by computing the chemical organizations within the full RAF
set). These closed RAFs are represented by the colored circles and the various
possible combinations of them.



Given that the full 25-peptide RAF set has 12 closed RAF subsets, compared
to two for the 9-peptide network, an even wider range of possible dynamics can
be expected from this larger network. Figure 14 shows the results of two simula-
tion runs on the 25-peptide network, showing the number of molecules over time
for one of the members of each closed RAF in Figure 13 (using corresponding
colors). Initial conditions and reaction rate constants are similar to those of the
simulations on the 9-peptide networks: 50,000 molecules of each of the 25 E;,
850,000 molecules of N (about 2/3 of the total amount of E;), and converting
the calculated scores s to rate constants r using the estimated quadratic rela-
tion. As the plots show, which closed RAFs come into existence first (or at
all) depends on which of the catalysts are created (by chance) through initial
spontaneous reactions.

We further argue that using the detailed insights gained from the theoret-
ical network analysis and computational simulations, it should be possible to
construct alternative experimental peptide networks and/or to find conditions
that will explicitly alter the modularity. An experiment in this direction was
already performed by Ashkenasy et al., where varying the environmental condi-
tions through lowering the medium pH or increasing salt concentration showed
significant network rewiring compared to the “native” reaction conditions (see
Figure 15), giving rise to a new set of closed RAF subsets and selective ampli-
fication of one or more of the RAF products [35]. Lowering the pH results in
the formation of a new dominant RAF subset {T;,T2,T7}, in which the three
peptides support each other’s formation and are also formed through additional
catalytic pathways. Increasing the salt concentration led to a unique RAF, in
which the formation of a central node T, is supported by multiple catalytic
pathways.

If a given network does indeed possess modularity, then stochastic events
such as spontaneous reactions can directly affect the overall dynamics. However,
these alternative dynamics can be explicitly controlled by seeding the system in
specific ways, rather than relying on spontaneous reactions. By manipulating
the peptide networks discussed here (or their close analogs) it has thus been
shown, both experimentally and theoretically, that it is possible to perform
(simple) computations and network motifs [36, 37, 38, 39, 40].

It has been shown in actual chemical experiments, and also in theory, that
product inhibition can influence the overall behavior of an autocatalytic sys-
tem, in particular the (initial) product growth rates being parabolic instead of
exponential [41, 2, 7]. Such an effect can potentially give rise to the coexistence
of different molecular replicators, rather than one outcompeting all others [42].
Here we have shown explicitly by simulations how product inhibition affects
the behavior of an entire autocatalytic network, not only in terms of the (ini-
tial) growth rates, but also in terms of the relative abundances of the various
peptides.

Finally, we argue that since the current simulations were applied to analyze
a realistic experimental system, composed of molecules of biological origin (the
coiled coil peptide motifs), our results provide further support for the validity of
the formal autocatalytic sets (RAF) framework for describing scenarios relevant



to the emergence of functional molecules in early chemical evolution, potentially
leading to the (or an) origin of life. Furthermore, the RAF analysis revealed
the flexibility in network topology and dynamics potentially available within
peptide networks, re-iterating their likely involvement in pre-cellular molecular
evolution [15, 43, 44, 45, 46], prior to or in co-existence with an RNA world.
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Figure 1: A simple example of an autocatalytic set R consisting of five reactions.
Dots represent molecule types, while boxes represent reactions, with solid arrows
indicating reactants going into and products coming out of a reaction. Dashed
arrows indicate catalysis. The food set F' consists of the five molecule types at
the bottom. Adapted from [47].
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Figure 2: The experimentally characterized peptide-based autocatalytic set. Ar-
rows indicate which peptides catalyze the formation of which others, with labels
indicating the corresponding score. The different line styles (solid, dashed, or
dotted) reflect different ways in which the scores were experimentally measured.
Adapted from [10], with the three missing scores (for values < 5.6) added.
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Figure 3: The quadratic fit (solid line) between the experimentally observed
autocatalytic rate constants r and scoring values s from Table 1 (dots). The
regression has an R? value of 0.976 (i.e., it is a very good fit), with all estimated
parameter values being highly significant (i.e., a significance level of 0.01 or
better).
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Figure 4: A simulation run with two spontaneous reactions first producing Ty

and then Tg. Note that the subset R4 is indicated with solid dots and the
subset Ro with open dots.
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Figure 5: A simulation run with two spontaneous reactions first producing T3
and then Ty4. Solid and open dots again distinguish R; and Ro.
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Figure 6: A simulation run with two spontaneous reactions producing T first
and then Tg later on.
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Figure 7: The relative abundance (in percentage of total concentration) of the
nine peptides T; from an experiment (dark bars) and the simulation presented
in Figure 4 (light bars).
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Figure 8: The fully connected network with two spontaneous reactions first
producing T7 and then T5. Since there is no modularity anymore, all products
are indicated with solid dots.
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Figure 9: The relative abundances of all products at the end of a simulation,
depending on which catalyst was introduced as the seed (50 molecules).
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Figure 10: A simulation run with weak product inhibition, and initial seeding
with 10 molecules of T}.
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Figure 11: The (initial) growth of T; depending on the strength of product
inhibition.
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Figure 12: The relative abundances (in percentage of total concentration) of the
nine peptides T; for various strengths of product inhibition.
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Figure 13: The full 25-peptide autocatalytic set and its closed RAF subsets
(indicated by colored circles). Adapted from [10].
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Figure 14: Two different simulation results on the same 25-peptide reaction
network. The differences are purely due to stochastic events, i.e., different
spontaneous (uncatalyzed) reactions happening initially. The black line shows
the number of “food” (N) molecules left in the system over time.
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Figure 15: A 9-mer network connectivity in different environmental conditions.
The different colors emphasize the sub-networks that were formed under these
distinct settings. The network topology under 'Native’ conditions (middle) is
identical to that shown in Figure 2, but highlighting the RAF subsets slightly
differently to allow better comparison with the networks under variable condi-
tions (left and right). Adapted from [35].
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