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Abstract The average fitness difference between adjacent
sites in a fitness landscape is an important descriptor that im-
pacts in particular the dynamics of selection/mutation pro-
cesses on the landscape. Of particular interest is its connec-
tion to the error threshold phenomenon. We show here that
this parameter is intimately tied to the ruggedness through
the landscape’s amplitude spectrum. For the NK model a
surprisingly simple analytical estimate explains simulation
data with high precision.
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1 Introduction

Fitness landscapes have been studied for nearly a century as
a convenient model of evolutionary adaptation. In this pic-
ture, fitness takes the role of a potential function with the
combined effects of mutation and selection driving a popula-
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tion uphill (Wright, 1932, 1967). The dynamics of this pro-
cess crucially depends on the “topography” of the landscape,
which in turn can be understood as a combination of a topo-
logical structure on the underlying search space X that in-
duces a notion of adjacency or nearness (Stadler and Stadler,
2002), and properties of the fitness function f : X→R itself.
Due to the generality of the model, fitness landscapes have
been investigated in many different contexts beyond evo-
lutionary biology, including spin glass physics, biopolymer
folding, metabolic adaptation, gene regulation, and combi-
natorial optimization, see e.g. (Reidys and Stadler, 2002;
Richter and Engelbrecht, 2014). Recently, fitness landscapes
even have started to become accessible to experimental stud-
ies (Kondrashov and Kondrashov, 2015), reigniting the in-
terest in geometric and topological features of landscapes
and their relationships with properties dynamical systems
operating on landscapes.

A particularly dramatic phenomenon of adaptive dynam-
ics on landscapes is the error threshold (Eigen, 1971; Mc-
Caskill, 1984). It refers to the fact that for sufficiently small
mutation rates a quasi-species, i.e., a population of sequences
evolving under point-mutation and fitness proportional se-
lection, is localized in sequence space around a peak in the
fitness landscape; above a critical value of the mutation rate,
however, the population becomes spread out approximately
uniformly (McCaskill, 1984). The error threshold phenomenon,
which is reminiscent of a phase transition, has been observed
for a wide variety of fitness landscapes (Schuster, 2016),
even though it does not appear to arise in all landscapes
(Wiehe, 1997). As a means of studying the effects of land-
scape structure on dynamics in a systematic manner, tunable
landscape models have been devised in which the rugged-
ness can be adjusted. The most widely used, and presum-
ably best studied one is the NK model (Kauffman and Levin,
1987; Kauffman, 1989, 1993). In the realm of spin glasses,
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the p-spin Hamiltonians play the same role (Stadler and Hap-
pel, 1999).

In this contribution we are concerned with the average
fitness differences between a configuration x and its neigh-
bors (Whitley et al., 2008). More formally, we consider

(∆ f )(x) := ∑
y:x∼y

( f (y)− f (x)) (1)

The operator ∆ is (the negative of) the graph Laplacian (Mo-
har, 1997), which plays a key role in the algebraic theory of
landscapes (Reidys and Stadler, 2002; Klemm and Stadler,
2014). The quantity that we are particularly interested in
here is the expected value of (∆ f )(x), which measures lo-
cal fitness differences, as a function of the fitness f (x) at
the reference points x. Note that (∆ f )(x) by definition mea-
sures the sum of the fitness differences between x and all its
neighbors.

This paper is organized as follows. First, we briefly re-
call the NK model of fitness landscapes and some of its
salient properties. We then show that the expected value of
[(∆ f )(x)| f (x)] follows a simple linear law that can be ex-
plained in terms of elementary components and the ampli-
tude spectrum of the NK landscapes (explained in detail be-
low). Finally, we confirm this linear relationship with nu-
merical simulations.

2 The NK model and its landscapes

The NK model (Kauffman, 1989) serves as a general model
of fitness landscapes with a tunable ruggedness introduced
by epistatic interactions. It assumes a “genome” with N genes,
each with two alleles (0 or 1), which is represented as a bit
string x of length N. The natural neighborhood operator for
bit strings (and spin glasses) is flipping a single bit or spin.
The resulting NK landscape thus “lives” on a Boolean hy-
percube (or Hamming graphs). The fitness function f (x) of
the NK model is the sum of N contributions fi(x), each of
which depends on the i-th bit of x as well as K other bits of
x, modeling epistatic interactions:

f (x) =
1
N

N

∑
i=1

fi(x) (2)

For K = 0 there is no epistasis and fi(x) depends only on the
value of xi.

A particular instance of the model is thus specified in
terms of a table of N2K+1 fitness values, one for each con-
figuration of the K + 1 bits contributing to fi(x), together
with a rule that determines which K bits influence fi(x). For
example, the K bits can be chosen to be the nearest neigh-
bors of i, or randomly assigned without repetitions. As we
shall see later-on, the particular choice of this assignment is
not relevant for our purposes.

Further details can be found in (Kauffman, 1993). The
fitness values themselves are assigned from a uniform distri-
bution. An example for N = 3 and K = 2 is given in the Ap-
pendix. The ruggedness of the landscape increases with K.
For K = 0 there are independent, additive contributions from
each bit. For K = N−1, on the other hand, there is a differ-
ent random contribution fi(x) for each value of the bit string
x, hence fitness values are uncorrelated random numbers.
The landscapes resulting from the NK model have been in-
vestigated in quite some detail in the literature (Weinberger,
1991; Kaul and Jacobson, 2006; Neidhart et al., 2013; Buzas
and Dinitz, 2014; Nowak and Krug, 2015), also in the con-
text of an error threshold (Campos et al., 2002; Ochoa, 2006).

A quite fruitful approach to analyzing landscapes starts
from an algebraic representation of the underlying search
space X (Stadler, 1994, 1996; Kallel et al., 2001; Reidys
and Stadler, 2002; Klemm and Stadler, 2014). Adjacencies
on X (in our case the binary strings of length N) are naturally
defined by a “move set” (here the point mutations 0↔ 1).
The resulting graph can be represented by its adjacency ma-
trix A, with entries Axy = 1 if x,y ∈ X are separated by a
single move (point mutation), and Axy = 0 otherwise. The
Laplacian matrix (−∆) has entries −Axy and diagonal en-
tries (−∆)xx = ∑y∈X Axy equal to the degree of the vertex x.
The negative sign is a convention connecting the formalism
of the Laplacian operator in Rn: discretizing space in a grid
yields ∆ as the Laplacian of the grid graph.

Since the graph Laplacian−∆ is simply an |X |-dimensional
symmetric matrix, every fitness function f : X → R can be
written as a linear combination f (x) = ∑I aIϕI(x) of the
eigenfunctions of ∆ . This representation is a generalization
of the Fourier transformation. For the Boolean hypercube,
i.e., the graph of interest here, this basis is well known: the
basis functions are the (normalized) Walsh functions (Walsh,
1923)

ϕI(x) =
1

2N/2 (−1)(I;x) (3)

where (I;x) := ∑
N
j=1 I jx j and the “indices” I are also bit-

strings of length N. The associated Laplacian eigenvalue
equals λI = 2p(I), where p(I) denotes the number of 1s in
I. In particular, ϕo(x) = 1 with p(o) = 0 (i.e., eigenvalue
λ0 = 0) is a constant function. For all other Walsh functions
we have ∑x∈X ϕI(x) = 0 and ∑x∈X ϕI(x) = 1. These prop-
erties hold true for the eigenvectors of graph Laplacians in
general. For the hypercube, there are

(N
p

)
Walsh functions of

order p. This is a general phenomenon: if the graph that de-
scribes the search space is highly regular, its Laplacian ma-
trix has many eigenvalues with high multiplicity. It therefore
makes sense to collect all basis functions that belong to a
given eigenvalue. These span a subspace of the fitness func-
tion. The projection of the fitness function to the eigenspace
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of the Laplacian with eigenvalue λp is

fp(x) = ∑
I:λI=λp

aIϕI(x) (4)

where the coefficients are given, as usual, by the scalar prod-
uct aI = 〈 f ,ϕI〉 = ∑x∈X f (x)ϕI(x). For the hypercube the
sum runs over all Walsh functions with |I| = p entries 1 in
their index.

A landscape is elementary if it is an eigenfunction (or
eigenvector) of the Laplacian up to an additive constant.
More precisely, a landscape is elementary if there are con-
stants λ and f̄ such that

(∆ f )(x) =−λ
(

f (x)− f̄
)

(5)

where the eigenvalue λ is closely related to the ruggedness
of the landscape (Grover, 1992; Stadler, 1994; Reidys and
Stadler, 2002). The additive constant f̄ necessarily equals
the average over the configuration space, i.e.,

f̄ := (1/|X |) ∑
x∈X

f (x) (6)

Thus f is elementary if (apart from the additive constant f̄ )
it is an eigenvector of the Laplacian, i.e., if only a single
elementary mode fp contributes.

Elementary landscapes have a number of appealing prop-
erties, such as a locally convex curvature near local optima,
a separation of local minima and maxima by the average
fitness f̄ (Grover, 1992), exponentially decreasing autocor-
relation functions (Stadler, 1996), and a mean fitness differ-
ence at x determined by −λ ( f (x)− f̄ )/D, where D is ver-
tex degree of the graph X , see e.g. (Stadler, 1996). While
some landscapes, such as certain spin glasses, are elemen-
tary landscapes on the hypercube, this is not true for NK
landscapes (see below).

To a certain extent, it is still possible to understand a
landscape in terms of the relative contributions of the in-
dividual elementary modes, and the properties of the con-
tributing elementary landscapes, see e.g. (Klemm and Stadler,
2014) for a recent overview. The amplitude spectrum (Stadler,
1996; Hordijk and Stadler, 1998) of the landscape describes
the relative contribution of the individual elementary modes:

βp = 〈 fp, fp〉
/
〈 f , f 〉= ∑

I:p(I)=p
|aI |2

/
∑
I 6=o
|aI |2 (7)

for p = 1, . . . ,N. Intuitively, the amplitude spectrum mea-
sures the contribution of each elementary mode to the total
variance in the landscape. This is the reason why the con-
stant contribution (with p(o) = 0) is excluded from the defi-
nition of the amplitude spectrum. For instance, the autocor-
relation function of f can be written as r(t) = ∑p βprp(t),
where rp(t) is the autocorrelation function of an elementary
landscape with eigenvalue λp (Stadler, 1996).

For the NK model, the amplitude spectrum can be com-
puted in closed form independent of the particular choice of
the epistatic interactions (Neidhart et al., 2013):

βp = 2−(K+1)
(

K +1
p

)
(8)

and βp = 0 for p = 0 and p > K +1. We note that the nota-
tion in (Neidhart et al., 2013) relates by k = K+1 with K in
the NK model. The latter is the number of sites with which
a given site interacts in addition to its own value, while the
parameter k of Neidhart et al. (2013) counts the total number
of sites on which one of the additive contributions depends.
The amplitude spectrum is independent of the choice of the
interaction model.

3 Average fitness differences in NK landscapes

In the NK model, each additive factor contributes to the en-
tire amplitude spectrum, i.e., f =∑

K+1
p=0 fp, where fp denotes

the sum term with fixed interaction order p in equ.(4). Thus

∆ f =
K+1

∑
p=0

∆ fp =
K+1

∑
p=1

λp fp (9)

where we have used that λ0 = 0. Recalling that amplitudes
of the fp are binomially distributed, this sum is dominated
by values of p with the maximal values of the amplitude
spectrum, i.e., the peak of the binomial distribution, or p ≈
(K+1)/2. For odd values of K this yields the approximation

∆ f (x)≈ λ(K+1)/2 f =−(K +1) f (10)

For K = 0 the landscape is elementary, hence ∆ f = −2 f .
For even values of K > 0, the expected amplitudes βK/2
and βK/2+1 are the same. Assuming that one dominates over
the other with equal probability, or that both interaction or-
ders contribute equally to f , we estimate ∆ f (x) ≈ (λK/2 +

λK/2+1)/2 · f . We therefore arrive at the estimate

∆ f ≈

{
−2 f K = 0
−(K +1) f K ≥ 1

(11)

This result has not been obtained by an exact calculation
but uses a rather “hand-waving” argument asserting that all
but the dominating modes, i.e., the ones with the largest βp
contribute little to the average fitness. We therefore validate
equ.(11) using numerical simulations.

To this end we picked a random starting point x ∈ X ,
generated all 1-bit neighbors, and computed (∆ f )(x)/N and
f (x). The normalization (by the factor 1/N) was performed
to compute the average different between adjacent points
rather than the sum of the differences as measured by the
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Laplacian operator. We then performed uphill and down-
hill adaptive walks to systematically sample configurations
with fitness values larger and smaller than average, respec-
tively. For different combinations of N and K, we sampled at
least 200 pairs of f (x),(∆ f )(x) values. Data were generated
for N = 10,20,30,40,50 and K = 0,5,9,19,29,39,49 with
K < N.

Figure 1 shows a scatter plot of (∆ f )(x)/N against f (x).
Both panels show that for each value of K the average ∆ f | f 0

of ∆ f over strings with approximate fitness f 0 exhibits the
expected linear dependence on f 0. Also following our ap-
proximation, the slope s for fixed N increases with K in Fig-
ure 1(a). Both panels show that the average fitness difference
∆ f | f 0/N vanishes for f 0 = 1/2, the expected fitness value
of a randomly chosen bit string in an NK model.

The empirically determined slopes are summarized in
Fig. 2(a) for different values of N and K. Normalizing Equ.(11)
by the factor 1/N yields the following predictions for the
slopes: s = 2/N for K = 0 and s = (K + 1)/N for all other
values of K. Fig. 2(b) shows that the theoretical and em-
pirical values are in excellent agreement. In particular we
see that the “mixed order” NK landscapes with K > 0 be-
have differently from the elementary (additive) landscape
for K = 0. The slope s is completely determined by N and K.
Since the autocorrelation function and the amplitude spec-
trum is influenced neither by the parity of K nor the choice
of the adjacency relation among the sites (Neidhart et al.,
2013), s is also unaffected by these parameters. Some em-
pirical results to confirm this are provided in the Appendix.
In contrast, the length of adaptive walks and the distribu-
tion of local optima depends the interaction scheme (Buzas
and Dinitz, 2014; Nowak and Krug, 2015). As in the case
of spin-glass models, the dominating influence is exerted by
the rank, that is, the number of (linearly) independent, non-
zero contributions aI in equ.(4) (de Oliveira et al., 1999).

4 Discussion

The average fitness differences on NK landscapes depend
in a simple manner on the the number of bits/spins N, the
strength of epistasis K, and the fitness of the reference point.
These dependencies are easily understood in terms of the el-
ementary modes, with the dominating mode, which corre-
sponds to the interaction of (K+1)/2 sites, determining the
behavior, except for the special case K = 0. The parameter K
in the NK model serves as a measure of ruggedness. To see
this, recall that the correlation length can be computed from
the amplitude spectrum (Stadler, 1996). For the NK model

we obtain

`= N ∑
p>0

βp/λp =
N

2K+2

K+1

∑
p=0

1
p

(
K +1

p

)
≈ N

2(K +1)

(12)

for large K. The slope s of the average fitness differences
thus coincides with the inverse correlation length. As ex-
pected intuitively, therefore, we have larger local fitness vari-
ations on more rugged, i.e., less correlated, landscapes.

These observations have direct consequences for the pos-
sible existence of an error threshold on NK landscapes. Schus-
ter observed that “...a smaller difference in fitness other fac-
tors being unchanged causes the transition to occur at a smaller
[value of the mutation rate].” (Schuster, 2016, p.100). More
precisely, the error threshold, that is, the maximally toler-
able mutation rate pmax per digit and replication satisfies
N pmax≈ lnσ , where the superiority σ is a population-averaged
fitness difference (Eigen et al., 1989). The population-independent
local average fitness difference (∆ f )/N is only an approxi-
mation for σ , which nevertheless reflects the general trends
very well (Bonhoeffer and Stadler, 1993; Semenov et al.,
2014).

Consequently, on smoother landscapes the error thresh-
old will already occur at lower mutation rates µ , while on
more rugged landscapes it will only occur at higher µ . So,
even though it is more difficult to find a high-fitness peak on
a more rugged landscape, once one is found it is more likely
that the population can stay on it compared to smoother
landscapes, where high-fitness peaks are easier to find but
harder to maintain. Our results provide precise quantitative
measures for such comparisons.

An important caveat is this that this statement is true of
landscapes that are sufficiently “isotropic” (Garcı́a-Pelayo
and Stadler, 1997; Stadler and Happel, 1999) in the sense
that a large number of individual degrees of freedom (coeffi-
cients aI in equ.(4)) contribute with comparable magnitudes
to each mode βp of the amplitude spectrum, and that the am-
plitude spectrum itself if dominated by a small number of
modes with similar eigenvalues, i.e., adjacent values of the
interaction order p. The first property ensures that there is
not a lot of neutrality in the landscapes (Reidys and Stadler,
2001). The second property ensures that the landscape be-
haves similar to an elementary landscapes (Stadler, 1996),
in which case the linear relationship between (∆ f )/N and f
is exact. Landscape that drastically deviate from these “be-
nign” properties may behave very differently, and in extreme
cases, do not show a sharp error threshold at all (Wiehe,
1997; Bull et al., 2005).
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Fig. 1 Scatter plot of (∆ f )(x)/N against f . (a) Data for N = 50 and different values of K. (b) Data for K = 5 and various values of N. Straight
lines represent linear regression fits.
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for K = 0 (blue) and K ≥ 1 (black), respectively. Within the stochastic uncertainty, measured (dots) and predicted (lines) slopes are in agreement.
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A An example of an NK landscape

We include here a brief example of an NK landscape, taken from (Kauff-
man, 1993). The fitness contributions fi(b) for the individual positions
are tabulated for each value of the bit bi itself and K = 2 additional
relevant bits. The final fitness value for each bit string is the average of
the position-wise contributions. Together with the adjacency relation
of the Boolean hypercube, this defines the landscape.

value fitness
of bit contribution total fitness

b1 b2 b3 f1 f2 f3 f = 1
N ∑

N
i=1 fi

0 0 0 0.6 0.3 0.5 0.47
0 0 1 0.1 0.5 0.9 0.50
0 1 0 0.4 0.8 0.1 0.43
0 1 1 0.3 0.5 0.8 0.53
1 0 0 0.9 0.9 0.7 0.83
1 0 1 0.7 0.2 0.3 0.40
1 1 0 0.6 0.7 0.6 0.63
1 1 1 0.7 0.9 0.5 0.70

Fig. 3 A simple example of an instance of the NK model for N = 3
and K = 2. Top: The fitness contributions for the three bits for each
of the 2K+1 = 8 possible neighborhood configurations are assigned at
random. The fitness of the entire string is the average of the individual
fitness contributions. Bottom: The boolean hypercube representing the
fitness landscape defined in the table above.

B Independence of Parity and Neighborhood Structure

Figure 4 shows a scatter plot of (∆ f )(x)/N against f for landscapes
with different parity and different neighborhood structures (random
and adjacent). We have chosen the different values of K such that
the data sets are distinguishable. The predicted slopes for N = 50 and
K = 5, 10, 15, and 20 are s = 0.12, 0.22, 0.32, and 0.42, while the em-
pirical values from the data displayed here are ŝ = 0.127, 0.230, 0.328,
and 0.412, respectively. The empirical and theoretical values are in ex-
cellent agreement.
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Fig. 4 Scatter plot of (∆ f )(x)/N against f , illustrating that the slopes
do not depend on parity, i.e., even vs. odd values of K, or the choice of
adjacency, i.e., random (’rnd’) vs. adjacent (’adj’).
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